摘要
针对利用运动员脉搏波信息对其运动状态(高强度运动、平静)进行判别,并减少身体状态的随机性对脉搏波特征信息的影响问题,提出了一种对原始脉搏波信号进行建模进而提取特征信息进行状态判别的方法.利用训练-测试的二分类分析方式,对运动员的心率状态进行判别,以分析运动员的运动状态,辅助其进行运动训练工作.实验通过对10名运动员志愿者在不同状态下进行脉搏波采集,对预处理后的原始信号进行函数建模并提取生理信息,利用SVM进行监督训练和测试.结果表明,该方法能够对运动员心率状态进行有效判别,得到运动员的运动状态.
Aiming at the problem that the athlete′s pulse wave information is used to determine the motion state(high intensity motion or calm)and reduce the randomness of the body condition to the pulse wave characteristic information,a method to construct the original pulse wave signal was presented.The method of training-test was used to classify the athletes′heart rate to analyze the athletic state of the athletes and assist them in carrying out sports training work.Through the training of 10 athlete volunteers in different states,the original signal of the pretreatment was modeled and the physiological information was extracted.The SVM was used to supervise the training and test.The results show that the method can effectively discriminate the athlete′s heart rate state and get the state of motion.
作者
施瀚
赵海
陈星池
李大舟
SHI Han;ZHAO Hai;CHEN Xing-chi;LI Da-zhou(School of Information Science&Engineering,Northeastern University,Shenyang 110819,China)
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第12期1697-1701,共5页
Journal of Northeastern University(Natural Science)
基金
国家科技支撑计划项目(2012BAH82F00)
辽宁省科学技术计划项目(2015401039)
关键词
脉搏波
函数建模
二分类
状态判别
pulse wave
function modeling
two categories
state discrimination