期刊文献+

Nb-V低碳微合金钢等温淬火过程析出行为 被引量:2

Carbide Precipitation in Ferrite in Nb-V-Bearing Low-carbon Steel During Isothermal Quenching Process
下载PDF
导出
摘要 利用透射电镜和纳米压痕仪对Nb-V低碳微合金钢中纳米碳化物的析出行为进行研究.研究结果表明,在700℃等温60 min试样中,可同时观察到相间析出和弥散析出,在其余试样中均未观察到相间析出,此规律可以通过相变过程中的扩散准则和台阶机制来解释.另外,纳米压痕结果显示在600℃等温20 min试样中,平均硬度为3. 87 GPa,650℃等温20 min试样中,平均硬度为4. 10 GPa,且通过TEM观察可以看出,650℃等温20 min中试样析出物数量密度较大且分布均匀.利用Ashby-Orowan机制对析出强化量进行计算,可以得出在650℃等温20 min试样中,析出强化对整个屈服强度的贡献量可以达到110 MPa. Precipitation behavior of carbides in Nb-V HSLA steel during isothermal quenching process and its strengthening effect were studied using TEM and nanoindentation tests.The results indicated that interphase precipitations and dispersed precipitations could occur simultaneously in the specimen treated at 700℃ for 60 min,while in other specimens,only random precipitations were observed.This phenomenon can be explained by mass balance criterion and ledge mechanism during diffusional phase transformation.It was also found that the average hardness of the specimen held at 600℃ for 20 min was 3.87 GPa and was 4.10 GPa at 650℃ for 20 min.Moreover,the TEM results illustrated that carbide precipitations in the specimen holding at 650℃ for 20 min were dispersed more uniformly and the volume fraction of the precipitations was greater than that treated at 600℃ for 20 min.The strengthening contributed by the precipitations was 110 MPa in the specimen treated at 650℃ for 20 min,evaluated by the Ashby-Orowan mechanism.
作者 李小琳 邓想涛 李艳梅 王昭东 LI Xiao-lin;DENG Xiang-tao;LI Yan-mei;WANG Zhao-dong(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第12期1708-1711,1716,共5页 Journal of Northeastern University(Natural Science)
基金 国家重点研发计划项目(2017YFB0305300)
关键词 微合金高强度钢 相间析出 弥散析出 纳米压痕 HSLA steel interphase precipitation dispersed precipitation nanoindentation
  • 相关文献

参考文献2

二级参考文献31

  • 1干勇,董瀚.先进钢铁材料技术的进展[J].中国冶金,2004,14(8):1-6. 被引量:22
  • 2Bhadeshia H K D H. Large Chunks of Very Strong Steel [ J]. Materials Science and Technology, 2005, 21 : 1 293 - 1 302.
  • 3Ayer R, Machmeier P M. Microstructural Basis for the Effect of Chromium on the Strength and Toughness of AF1410-Based High Performance Steels[ J ]. Metallurgical and Materials Trarsactions A, 1996, 27: 2510-2518.
  • 4I)eGarmo E P, Black J T, Kohser R A. Material and Processes in Manufacturing[M]. New York: Wiley Press, 2003.
  • 5Lu K, Lu L, Suresh S. Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale [ J ]. Science, 2009, 324(17) : 349 -352.
  • 6Fine M E, Liu J Z, Asta M D. An Unsolved Mystery: the Com- position of bcc Cu Alloy Precipitates in bcc Fe and Steels [ J ].Materials Science and Engineering : A, 2007, 463 : 271 - 274.
  • 7Isheim D, Gagliano S, Fine M F, et al. Interfacial Segregation at Cu-Rich Precipitates in a High- Strength Low-Carbon Steel Stud- ied on a Sub-Nanometer Scale[J]. Acta Materialia, 2006, 54: 841 - 849.
  • 8Mulholland M D, Seidman D N. Nanoscale Co-Precipitation and Mechanical Properties of a High-Strength Low-Carbon Steel [ J ]. Acta Materialia, 2011, 59: 1 881 -1 897.
  • 9Orowan E. Symposium on Internal Stresses in Metals and Alloys [ M]. London : Institute of Metals, 1948.
  • 10Yong Qilong(雍岐龙).The, Second Phase in Iron and Steel (钢铁材料中的第二相)[M].Beijing : Metallurgical industryPress, 2006.

共引文献71

同被引文献47

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部