摘要
变精度贝叶斯粗糙集方法是感性知识获取中处理用户群个性化感性差异的一种柔性方法,针对其在感性规则提取阶段可能产生的组合爆炸问题,提出了一种基于顺序覆盖策略的改进算法.该算法以感性决策类的近似区域作为输入,以选取覆盖能力最大的合取项为贪心搜索策略实现规则特化.在此基础上,通过迭代学习逐步完成对近似区域的覆盖和决策规则集的提取.最后,通过基础实例和烤面包机外观设计实例验证了改进方法的有效性.
The variable precision Bayesian rough set(VPBRS)approach is a flexible method for Kansei knowledge acquisition to accommodate the individual differences within a user group.In order to handle the possible combinatorial explosion at the stage of Kansei rule extraction,an improved algorithm based on sequential covering strategy is proposed.Basically,the approximation regions of Kansei decision classes are taken as the input,and the selection of conjunctive items with maximum covering ability is taken as the greedy search strategy for rule specialization.On this basis,the approximation region is covered step by step through iterative learning,and the decision rule set is extracted.A basic example and a design example of toaster appearance are conducted,whose results show that the improved VPBRS approach is effective.
作者
胡名彩
郭伏
叶国全
HU Ming-cai;GUO Fu;YE Guo-quan(School of Business Administration,Northeastern University,Shenyang 110169,China)
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第12期1794-1799,共6页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(71471033
71771045)
东北大学"双一流"学科建设资助项目(02050021940101)
关键词
感性工学
知识获取
决策规则
贝叶斯粗糙集
顺序覆盖策略
Kansei engineering
knowledge acquisition
decision rule
Bayesian rough sets
sequential covering strategy