期刊文献+

基于CNN模型的遥感图像复杂场景分类 被引量:20

Complex scene classification of remote sensing images based on CNN
下载PDF
导出
摘要 复杂场景分类对于挖掘遥感图像中的价值信息具有重要意义。针对于遥感图像的复杂场景分类,提出了一种基于卷积神经网络(convolutional neural network,CNN)模型的分类方法,在该方法中构建了8层CNN网络结构,并对输入图像进行预处理操作以进一步增强模型的适应性,且在模型分类器的选择问题上提供了Softmax和支持向量机2种分类器,使其能够自动化提取特征,避免了前期繁琐的图像处理和人工提取特征等过程。在UC Merced Land Use和Google of SIRI-WHU这2组数据集中进行实验,结果表明,相比于CNN with Overfeat feature和SRSCNN方法,该模型提高了2%以上的分类精度,且2种分类器的总体分类精度均能达到95%以上。 Complex scene classification has great significance for mining the value information in remote sensing images.The proposed convolutional neural networks(CNN)can improve the complex scene classification of remote sensing images.The CNN method extracts features automatically,avoiding problems in the image pretreatment and the feature extraction by manual labor.An eight-layer CNN model is constructed in this paper,and the pre-treatment module has enhanced the adaptability of this method.Given the problem in choosing classifiers,this paper provides the Softmax and support vector machine(SVM)in the presented CNN.The experiment results in two datasets,the UC Merced Land Use and the Google of SIRI-WHU indicate that the presented CNN method can increase the accuracy of classification by more than2%compared with the CNN with Overfeat feature method and the SRSCNN method,and the total classification accuracy of the two classifiers is over95%.
作者 张康 黑保琴 李盛阳 邵雨阳 ZHANG Kang;HEI Baiqin;LI Shengyang;SHAO Yunyang(Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China;Key Laboratory of Space Utilization, Chinese Academy of Sciences, Beijing 100094, China;University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《国土资源遥感》 CSCD 北大核心 2018年第4期49-55,共7页 Remote Sensing for Land & Resources
基金 中国科学院空间应用工程与技术中心前瞻性课题“基于深度学习的高分辨率遥感影像农作物识别方法研究”(编号:CSU - QZKT-201713)资助.
关键词 卷积神经网络 深度学习 遥感图像 场景分类 支持向量机 convolutional neutral networks deep learning remote sensing images scene classification support vector machine
  • 相关文献

参考文献8

二级参考文献145

共引文献260

同被引文献204

引证文献20

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部