期刊文献+

LiCl-KCl共晶熔盐的纯化 被引量:2

Purification of Lithium Chloride-Potassium Chloride Eutectic
下载PDF
导出
摘要 氯化锂-氯化钾共晶熔盐是电解精炼干法后处理中最常用的电解质,其含有的杂质直接影响电流效率和产物纯度。本研究分别采用高温处理、HCl气体鼓泡和恒电位电解等方法依次去除了熔盐中的易挥发物质、氧离子和金属离子等杂质,获得了较高纯度的熔盐。采用热重分析(TGA)、电化学和电感耦合等离子体原子发射光谱(ICP-AES)等方法对比了纯化前后熔盐中各杂质的含量。研究结果表明:去除易挥发杂质的最佳处理温度范围为450~650℃;去除杂质金属离子时最佳电解电位为-2.3Vvs.Ag/AgCl(摩尔分数2%),恒电位电解800s后杂质金属离子总量低于1.5×10-6 g/g(盐)。以上研究结果表明,采用高温处理、HCl气体鼓入和恒电位电解可获得纯度较高的LiCl-KCl共晶熔盐。 Lithium chloride-potassium chloride eutectic is the most commonly used electrolyte in electrorefining dry reprocessing, and its impurities directly affect current efficiency and product purity. In this study, high-temperature calcination, HCl gas bubbling, and potentialstat electrolysis were used to remove the volatile, oxygen ions, and metal ions impurity in molten salt in sequence, and to obtain higher purity molten salt. Thermogravimetric analysis (TGA), electrochemical and inductively coupled plasma atomic emission spectrometry (ICP-AES) were used to compare the contents of impurities in molten salt before and after purification. The results show that the optimal calcining temperature range for removal of volatile impurities is 450-650 ℃; the optimal electrolytic potential for removing metal ions impurity is -2.3 V vs. Ag/AgCl( x =2%), and the total metal ion concentration after constant potential electrolysis for 800 s is less than 1.5×10^-6 g/g (salt). Based on the above results, higher purity LiCl-KCl eutectic can be obtained by high-temperature calcination, HCl gas bubbling, and constant potential electrolysis.
作者 张凯 王有群 肖益群 林如山 贾艳虹 何辉 ZHANG Kai;WANG You-qun;XIAO Yi-qun;LIN Ru-shan;JIA Yan-hong;HE Hui(China Institute of Atomic Energy, P. O. Box 275(26), Beijing 102413, China;East China University of Technology, Nanchang 330013, China)
出处 《核化学与放射化学》 CAS CSCD 北大核心 2018年第6期382-387,共6页 Journal of Nuclear and Radiochemistry
关键词 LiCl-KCl熔盐 纯化 电解精炼 干法后处理 LiCl-KCl molten salt purification electrorefining dry reprocessingLiCl
  • 相关文献

参考文献2

二级参考文献30

  • 1Price R R,Blaise J R,Vance R E.Uranium Production and Demand:Timely Mining Decisions Will Be Needed[J].NEA News,2004,22(1):16-17.
  • 2Glatz J P,Hans D,Magill J,et al.Partitioning and Transmutation Options in Spent Fuel Management[C/CD] // Proceedings of Global 2003:Atoms for Prosperity:Updating Eisenhower's Global Vision for Nuclear Energy.New Orleans,LA,USA,November 16-20,2003.
  • 3Kasai Y,Kakehi I,Moro S,et al.Design Study on Advanced Nuclear Fuel Recycling System[C/CD]// Global' 99 Proceedings of the International Conference on Future Nuclear System,Snow King Resort,Jackson Hole,Wyoming,USA:American Nuclear Society,1999.
  • 4World Nuclear Association.Mired Oride Fuel[M/OL].Http://www.World-nuclear.Org.Info/.July,2003.
  • 5Baetsle L H,Raedt C D,Volckaert G.Impact of Advanced Fuel Cycles and Irradiation Scenarios on Final Disposal Issues[C/CD] // Global ' 99 Procee dings of the International Conference on Future Nuclear System,Snow King Resort,Jackson Hole,Wyoming,USA:American Nuclear Society,1999.
  • 6Hore-Lacy I.Nuclear Electricity[M/OL].7 th ed.UIC Ltd.and the World Nuclear Association 2003,Chapter 5:2-3.http://www.world-nuclear.org.
  • 7Bertel E,Wilmer P.Whither the Nuclear Fuel Cycle?[J].Nucl Energy,2003,42(3):149-156.
  • 8Around the Fuel Cycle[J].Nucl Eng Int,2002,November:24-26.
  • 9Pelland B.Proliferation Issues of Plutonium Recycling[J].JNMM,2002,31(1):30-38.
  • 10Kim J I,Compper K,Closs K D,et al.,German Approaches to Closing the Nuclear Fuel Cycle and Final Disposal of HLW[J].J Nucl Mater,1996,238:1-10.

共引文献47

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部