摘要
针对受外力影响的曲线发展问题,研究了一种新的非局部平面凸曲线的发展演化。在演化过程中,曲线保持凸性,所围区域的面积增大而曲线的长度减少。在Hausdorff测度下,当t趋向于无穷大时,曲线收敛到有限圆。
For the evolution problem of curve influenced by external forces,the evolution of a new nonlocal planar convex curve was studied. The convexity of the evolution curve was kept,and the area of the region surrounded by the evolution curve was increased and the length was decreased in the evolution progress. The curve was converged to finite circle in Hausdorff measure when t approached to infinity.
作者
邢巧芳
XING Qiaofang(Basis Department,Information Engineering University,Zhengzhou 450002,China)
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2019年第2期87-90,110,共5页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(41671409)
河南省科技攻关基金项目(172012201553)
关键词
非局部
凸曲线
支撑函数
发展演化
曲率半径
nonlocal
convex curve
support function
evolution
curvature radius