摘要
情感词在文本情感分析中处于举足轻重的地位,词语情感倾向的不确定性会受到词语上下文环境的影响。针对词语上下文环境,提出一种基于最大熵模型的词语情感倾向分析方法,从词语上下文中提取词语特征、词语关系特征、词语语义特征和词语情感特征,采用最大熵模型来识别词语的情感倾向,并利用平滑技术解决特征稀疏问题。同时,利用词语与句子之间的情感联系,进一步消除词语情感倾向的不确定性。实验结果表明,该方法在词语情感倾向识别上取得了令人满意的效果。
Emotion words with sentiment polarity play important roles in text sentiment analysis.Uncertainties of sentiment polarity of words are affected by their contexts.In light of these contexts,a method is put forward in this paper to analyze sentiment polarity of words based on maximum entropy models.Features of words,relationships of words,semantic features and emotional characteristics of words are extracted from contexts.Then,sentiment polarity of words is identified by maximum entropy models,and problems concerning sparse features are solved by smoothing techniques.In the meantime,uncertainties of sentiment polarity of words are further eliminated by emotional connections between words and sentences.Experimental results show that this method achieves satisfactory effects in recognizing sentiment polarity of words.
作者
王磊
Wang Lei(School of Science and Technology, Shanghai Open University, Shanghai 200443, China)
出处
《计算机时代》
2018年第12期7-11,共5页
Computer Era
基金
上海市财政经费支持项目(KX1712)
关键词
情感分析
最大熵
语义特征
情感倾向
sentiment analysis
maximum entropy
semantic feature
sentiment polarity