期刊文献+

基于最大熵的中文词语情感分析研究 被引量:3

Sentiment analysis of Chinese words based on maximum entropy
下载PDF
导出
摘要 情感词在文本情感分析中处于举足轻重的地位,词语情感倾向的不确定性会受到词语上下文环境的影响。针对词语上下文环境,提出一种基于最大熵模型的词语情感倾向分析方法,从词语上下文中提取词语特征、词语关系特征、词语语义特征和词语情感特征,采用最大熵模型来识别词语的情感倾向,并利用平滑技术解决特征稀疏问题。同时,利用词语与句子之间的情感联系,进一步消除词语情感倾向的不确定性。实验结果表明,该方法在词语情感倾向识别上取得了令人满意的效果。 Emotion words with sentiment polarity play important roles in text sentiment analysis.Uncertainties of sentiment polarity of words are affected by their contexts.In light of these contexts,a method is put forward in this paper to analyze sentiment polarity of words based on maximum entropy models.Features of words,relationships of words,semantic features and emotional characteristics of words are extracted from contexts.Then,sentiment polarity of words is identified by maximum entropy models,and problems concerning sparse features are solved by smoothing techniques.In the meantime,uncertainties of sentiment polarity of words are further eliminated by emotional connections between words and sentences.Experimental results show that this method achieves satisfactory effects in recognizing sentiment polarity of words.
作者 王磊 Wang Lei(School of Science and Technology, Shanghai Open University, Shanghai 200443, China)
出处 《计算机时代》 2018年第12期7-11,共5页 Computer Era
基金 上海市财政经费支持项目(KX1712)
关键词 情感分析 最大熵 语义特征 情感倾向 sentiment analysis maximum entropy semantic feature sentiment polarity
  • 相关文献

参考文献4

二级参考文献68

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 4D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: Proc. of the 10th European Conf. on Machine Learning. New York: Springer,1998, 4-15.
  • 5Y. Yang, X. Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf. onResearch and Development in the Information Retrieval. NewYork: ACM Press, 1999.
  • 6Y. Yang, C. G. Chute. An example based mapping method for text categorization and retrieval. ACM Trans. on Information Systems, 1994, 12(3): 252 -277.
  • 7E. Wiener. A neural network approach to topic spotting. The 4th Annual Syrup. on Document Analysis and Information Retrieval,Las Vegas, NV, 1995.
  • 8R. E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predications. In: Proc. of the 11th Annual Conf.on Computational Learning Theory. New York: ACM Press,1998. 80--91.
  • 9T. Joachims. Text categorization with support vector machines:Learning with many relevant features. In: Proc. of the 10th European Conf. on Machine Learning. New York: Springer,1998. 137-142.
  • 10Y. Yang. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1 ( 1 ) : 76-- 88.

共引文献977

同被引文献31

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部