期刊文献+

数控机床专用永磁同步电机分数阶滑模控制 被引量:4

Fractional Order Sliding Mode Control System for Permanent Magnet Synchronous Motor Using in NC Machine Tool
下载PDF
导出
摘要 数控机床专用伺服电机要求很高的精度,尤其是在负载扰动和外部干扰情况下,也不能影响电机的精度。滑模控制方法无疑是一种比较适合伺服电机的控制算法,但存在抖震问题。针对传统整数阶滑模控制系统中存在的抖震问题,提出分数阶滑模控制策略。采用滑模分数阶导数面代替传统整数阶切换流形面,不但能增加系统调节自由度,而且利用分数阶算子随时间的衰减特性分散系统的能量,有效地削减抖震。并采用模糊逻辑推理算法,实现软开关切换增益的自整定。仿真结果证明:提出的基于参数模糊自整定的分数阶滑模控制系统不但能有效地削减抖震,而且能保持滑模控制器对系统参数变化的强鲁棒特性。 A scheme of designing fractional order sliding mode controller based on fuzzy inference algorithm was proposed for dealing with the chattering existing in conventional integral order sliding mode controller.Fractional calculus was introduced to design the control law of sliding mode controller.The soft-switching will not act on the integral order derivative of sliding mode surface but on its fractional order derivative.Based on the property of fractional calculus,this action will decrease chattering.Moreover,in order to deal with the upper bound of uncertainties,fuzzy logic inference algorithm was used to obtain the gain of soft-switching.Simulation results demonstrate that the proposed fractional order sliding mode controller based on fuzzy logic inference system not only can achieve better control performance than the conventional integral sliding mode control system,but also is robust with regard to system parameter variations.
作者 丘永亮 QIU Yongliang(School of Mechanical and Electrical Engineering,Guangdong College of Industry and Commerce,Guangzhou Guangdong 510510,China)
出处 《机床与液压》 北大核心 2018年第22期124-126,153,共4页 Machine Tool & Hydraulics
基金 广东工贸职业技术学院资助项目(2017-Z-7)
关键词 数控机床 分数阶滑模控制 永磁同步电机 抖震 NC machine tool Fractional order sliding mode control PMSM Chattering
  • 相关文献

参考文献2

二级参考文献22

  • 1Li X Q, Decarlo R A. Robust sliding mode of uncertain time-delay systems[J]. Int J of Control, 2003, 76(13): 1296-1305.
  • 2Huang Y J, Kuo T C. Robust output tracking control for nonlinear time-varying robotic manipulators [J]. Electrical Engineering, 2005, 87(1): 47-55.
  • 3Slotine J J, Li W. Applied nonlinear control [M]. Englewood Cliffs.. Prentice-Hall, 1991.
  • 4Huang Y J, Kuo T C. Robust position control of DC servomechanism with output measurement noise [J]. Electrical Engineering, 2006, 88(3): 223-338.
  • 5Furuta K. VSS type self-tuning control[J]. IEEE Trans on Industrial Electronics, 1993, 40(1): 37-44.
  • 6Lee P M, Oh J H. Improvements on VSS type self-tuning control for a tracking controller[J]. IEEE Trans on Industrial Electronics, 1998, 45(2) : 319-25.
  • 7Chang W D, Hwang R C, Hsieh J G. Application of an auto-tuning neuron to sliding mode eontrol[J]. IEEE Trans on Systems, Man and Cybernetics, 2002, 32(4): 517-519.
  • 8Lhee C G, Park J S, Ahn H S, et al. Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters[J]. IEEE Trans on Fuzzy Systems, Man and Cybernetics, 2001, 9(2): 343-348.
  • 9Lee H, Kim E, Kang H J, et al. A new sliding-mode control with fuzzy boundary layer[J]. Fuzzy Sets and Systems, 2001, 120(1): 135-43.
  • 10Kuo T C, Huang Y J, control with self-tuning systems[J]. ISA Trans, Chang S H. Sliding mode law for uncertain nonlinear 2008, 47(2): 171-178.

共引文献13

同被引文献24

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部