期刊文献+

食饵带收获率的Holling-2型捕食者—食饵模型的Bautin分岔 被引量:1

Bautin Bifurcation of Holling-2 Predator-prey Model with Harvest Rate
下载PDF
导出
摘要 为研究食饵带有收获率参数的Holling-2型捕食者—食饵模型的余维2分岔现象,本文通过对食饵带有收获率的生物模型的第二Lyapunov系数的计算和分析,得出了生物模型发生余维2 Bautin分岔的条件,并给出了相应的Bautin分岔曲面。 In order to study the condimension2bifurcation phenomenon of holling-2predator-prey model with harversrt rate parameters,in this paper,based on the second Lyapunov coefficient of the biological model with predator-prey model with harvesting rate,through calculation and analysis,it is concluded that the biological model has the condimension2Bautin bifurcation,and gives the corresponding Bautin bifurcation surface.
作者 傅仙发 陈剑峰 岳金健 FU Xian-fa;CHEN Jian-feng;YUE Jin-jian(Department of Basic Course, Meizhouwan Vocational Technology College, Putian Fujian 351254, China)
出处 《长春师范大学学报》 2018年第12期1-3,共3页 Journal of Changchun Normal University
基金 2017年福建省教育厅中青年教师教育科研项目"带有收获率的捕食者-食饵模型的分岔分析"(JAT171121)
关键词 收获率 捕食者—食饵模型 Bautin分岔 harvest rate predator-prey model Bautin bifurcation
  • 相关文献

参考文献4

二级参考文献19

  • 1Lorenz EN. Deterministic nonperiodic flow. J. Atmos. Sci. ,1963, 20:130 - 141.
  • 2Chen G R, Ueta T. Yet another chaotic attractor. Int. J. Bifurcation Chaos, 1999, 9 : 1465 - 1466.
  • 3Lu J H, Chen G R. A new chaotic attractor coined. Int. J. Bifurcation Chaos, 2002, 12:659-661.
  • 4Lu Z, Duan L. Codimension-2 Bautin bifurcation in the Lu system. Physics Letters A, 2007, 366 : 442 - 446.
  • 5Mello L F, Coelho S F. Degenerate Hopf bifurcation in the Lu system. Physics Letters A, 2009, 373 : 1116 - 1120.
  • 6Li Yuxia, Tang Wallace K S, Chen Guanrong. Generating hyperchaos via state feedback control. Int. J. Bifurcation Chaos, 2005, 15(10) :3367 -3375.
  • 7El-Dessoky M M. Synchronization and anti-synchronization of a hyperchaotic Chen system. Chaos, Solitons and Fractals, 2009, 39(4) : 1790 -1797.
  • 8Kuznetsov Y A. Elements of Applied Bifurcation Theory, second ed. New York: Springer-Verlag. 1998.
  • 9赵延忠.一类捕食者-食饵扩散模型的稳定性分析[J].数学教学研究,2008,27(2):55-56. 被引量:4
  • 10王震,毛鹏伟.一类三维混沌系统的分叉及稳定性分析[J].动力学与控制学报,2008,6(1):16-21. 被引量:23

共引文献12

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部