期刊文献+

基于I-GARCH的不确定时间序列概率分布推算

Probability Distribution Estimation of Uncertain Time Series Based on I-GARCH
下载PDF
导出
摘要 处理不确定数据存储问题的常用方法是使用概率数据库的方法,但是已有的概率数据库生成方法是针对已知概率分布的数据集。不确定时间序列在每一时刻的概率分布规律随着时间的变化而变化,无法使用统一的概率推导方法进行计算,因此已有的概率数据库生成方法不再适用。为解决该问题,依托已有的ARMA模型和GARCH模型,提出推导不确定时间序列概率分布的推算模型。同时,为了进一步增强该模型的容错性,提出了相应的错误值过滤算法。实验结果表明,该模型能够有效地根据不确定时间序列的发展规律,动态地进行调整计算,得出不确定时间序列的概率分布;同时,容错算法能够很好地探测找到数据集中的错误数据,进行数据的清洗与替换,体现出良好的容错性与一般通用性。 One of the most effective ways to deal with uncertain time series is to employ probabilistic database.But existing methods of generating probabilistic database are typically based on the assumption that the probabilistic distribution is already known.The law of probability distributions of uncertain time series varies with time and cannot be calculated by a uniform method,so the existing methods of generating probabilistic database are no longer applicable.To solve the problem,based on the existing ARMA model and GARCH model,we propose a prediction model for deriving the probability distribution of uncertain time series.In addition,in order to enhance the fault tolerance of the model,we propose a corresponding erroneous value filtering algorithm.Experiment shows that the model can effectively adjust and calculate the probability distribution of uncertain time series,which is in line with the development law of the origin uncertain time series.Furthermore,the erroneous value filtering algorithm can detect and find the erroneous values well,and then wash and replace the data with inferred correct values,which shows great fault tolerance and commonality.
作者 汤其婕 王玙 TANG Qi-jie;WANG Yu(School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《计算机技术与发展》 2018年第12期23-28,共6页 Computer Technology and Development
基金 国家自然科学基金(61772269)
关键词 不确定时间序列 概率分布推算 ARMA模型 GARCH模型 错误值过滤 uncertain time series probability distribution estimation ARMA model GARCH model erroneous value filtering
  • 相关文献

参考文献7

二级参考文献242

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 4肖玲,李仁发,罗娟.基于非度量多维标度的无线传感器网络节点定位算法[J].计算机研究与发展,2007,44(3):399-405. 被引量:38
  • 5崔逊学,方红雨,朱徐来.传感器网络定位问题的概率特征[J].计算机研究与发展,2007,44(4):630-635. 被引量:14
  • 6王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992..
  • 7Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, 2004:588-599
  • 8Madhavan J, Cohen S, Xin D, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the 33rd Biennial Conference on Innovative Data Systems Research. Asilomar, 2007:342-350
  • 9Liu Ling. From data privacy to location privacy: Models and algorithms (tutorial)//Proceedings of the 33rd International Conference on Very Large Data bases. Vienna, 2007: 1429- 1430
  • 10Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)//Proeeedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, 1998:188

共引文献366

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部