期刊文献+

基于有限元法分析钙化软骨层的生物力学作用

Biomechanical function of calcified cartilage zone based on finite element analysis
下载PDF
导出
摘要 背景:钙化软骨层为柔软的透明软骨与坚硬的软骨下骨能够稳定连接提供了重要保障。但目前对钙化软骨层在此中发挥的生物力学作用并不十分清楚。目的:利用有限元分析技术探讨钙化软骨层的生物力学作用。方法:自愿捐赠的人体正常股骨髁标本1个,依据仿生学原理,构建骨软骨复合组织的三维有限元模型。该模型包含透明软骨、钙化软骨层和软骨下骨3层结构。对模型分别施加压缩载荷(0.5-3.0 MPa)与剪切载荷(0.1-0.5 MPa),分析3层结构的应力分布情况。结果与结论:(1)在压缩与剪切载荷作用下,透明软骨的应力峰值范围分别为0.15-0.86 MPa与0.58-0.74 MPa,钙化软骨层的应力峰值范围分别为0.33-1.91 MPa与1.27-1.62 MPa,软骨下骨的应力峰值范围分别为0.55-3.22 MPa与2.36-2.98 MPa;(2)有限元分析法通过钙化软骨层的应力分布特征揭示了其生物力学作用,即介导负荷以逐级递增方式从透明软骨传至软骨下骨,使负荷在骨软骨复合组织的3层结构中得以顺利传递。 BACKGROUND:Calcified cartilage zone is important for the stable connection between soft hyaline cartilage and hard subchondral bone.But the biomechanical role of calcified cartilage zone played in this process is poorly understood.OBJECTIVE:To explore the biomechanical role of calcified cartilage zone using finite element analysis.METHODS:Human normal femoral condyle specimen from a volunteer was obtained.According to the principle of bionics,a three-dimensional finite element model of osteochondral tissue was created with three compositions:hyaline cartilage,calcified cartilage zone and subchondral bone.The compression load(0.5-3.0 MPa)and shear load(0.1-0.5 MPa)were applied to the model respectively in order to analyze the stress distributions of three compositions.RESULTS AND CONCLUSION:Under compression load and shear load,the maximum stress of hyaline cartilage was 0.15-0.86 MPa and 0.58-0.74 MPa,respectively.The maximum stress of calcified cartilage zone was 0.33-1.91 MPa and 1.27-1.62 MPa,respectively.The maximum stress of subchondral bone was 0.55-3.22 MPa and 2.36-2.98 MPa,respectively.Finite element analysis reveals the biomechanical role of calcified cartilage zone through the feature of its stress distribution.It mediates the load transfer from hyaline cartilage to subchondral bone in a stepwise-increase way,so that the load can transfer smoothly in three compositions of osteochondral tissue.
作者 陈凯宁 叶青 农明善 罗柳宁 杨幸 陈诚 王富友 Chen Kaining;Ye Qing;Nong Mingshan;Luo Liuning;Yang Xing;Chen Cheng;Wang Fuyou(Department of Orthopedics,Guangxi General Hospital of Chinese People’s Armed Police Force,Nanning 530003,Guangxi Zhuang Autonomous Region,China;Department of Joint Surgery,Southwest Hospital,Army Medical University(the Third Military Medical University),Chongqing 400038,China)
出处 《中国组织工程研究》 CAS 北大核心 2019年第4期545-550,共6页 Chinese Journal of Tissue Engineering Research
基金 国家自然科学基金重点项目(81271981) 项目负责人:王富友 广西自然科学基金(2015GXNSFAA139168) 项目负责人:陈凯宁~~
关键词 透明软骨 钙化软骨层 软骨下骨 有限元分析 软骨生物力学 数字化骨科 软骨 骨和骨组织 生物力学 组织工程 Cartilage Bone and Bones Finite Element Analysis Biomechanics Tissue Engineering
  • 相关文献

参考文献4

二级参考文献79

  • 1孟广伟,程杰平,马洪顺.髌骨软骨拉伸应力松弛蠕变实验研究[J].医用生物力学,2003,18(4):239-243. 被引量:3
  • 2杨柳.加强软骨与骨组织工程中关键技术的应用[J].中华实验外科杂志,2005,22(3):263-265. 被引量:25
  • 3白希壮,王星铎.实验性骨关节炎中关节软骨钙化层厚度测定及其意义[J].中华骨科杂志,1996,16(1):40-43. 被引量:21
  • 4马立恒,刘斯润.关节软骨的结构与生物力学的关系及MR成像[J].国外医学(临床放射学分册),2006,29(2):123-126. 被引量:15
  • 5Wang F, Ying Z, Duan X, et al. Histomorphometric analysis of adult articular calcified cartilage zone. J Struct Biol, 2009, 168(3): 359-365.
  • 6Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 419-433.
  • 7Walsh DA, McWilliams DF, Turley MJ, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford), 2010, 49(10): 1852-1861.
  • 8Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res, 1994, 12(5): 637-647.
  • 9Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci, 2010, 1192: 230-237.
  • 10Ferguson VL, Bushby AJ, Boyde A. Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat, 2003, 203(2): 191-202.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部