期刊文献+

基于深度学习的车牌识别技术研究 被引量:8

RESEARCH ON LICENSE PLATE RECOGNITION TECHNOLOGY BASED ON DEEP LEARNING
下载PDF
导出
摘要 近年,随着家用车辆的不断增多,交通管制已成为当前国家亟待解决的一个重要问题.考虑到传统车牌识别系统识别率低的缺陷,本文针对车牌图像识别方面提出了一种基于深度学习卷积神经网络的车牌识别技术.实验表明,通过该方案进行的车牌识别在识别率和实用方面都具有较高的价值. In recent years,with the increase of domestic automobile,traffic control has become an urgent problem to be solved.In view of some problems in the existing license plate recognition system,this paper proposes a license plate recognition technology based on deep learning neural network.The experiment shows that the license plate recognition is of high value in recognition rate and practical aspect.
作者 白璐 衣姝颖 李天平 Bai lu;Yi Shuying;Li Tianping(School of Physics and Electronics,Shandong Normal University,250358,Jinan,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2018年第4期438-442,共5页 Journal of Shandong Normal University(Natural Science)
基金 山东省科技发展计划资助项目(2018GGX106008)
关键词 图像预处理 车牌定位 车牌字符识别 卷积神经网络 mage preprocessing license plate location license plate character recognition convolutional neural network
  • 相关文献

参考文献5

二级参考文献33

  • 1Wei Wu Dept. of Road and Traffic Engineering, Changsha Communications University, 410076, P. R. China Huang Xinhan, Wang Min & Song Yexin Dept. of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.An Automatic System of Vehicle Number-Plate Recognition Based on Neural Networks[J].Journal of Systems Engineering and Electronics,2001,12(2):63-72. 被引量:2
  • 2任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 3贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 4廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 5Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 6LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 7Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 8Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 9Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 10Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.

共引文献237

同被引文献68

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部