摘要
高速列车安全预警与状态监测方法是目前世界范围内高速铁路领域的研究重点和难点,通过建立半车垂向动力学模型,考虑车体的沉浮运动、构架的沉浮以及点头运动、轮对的沉浮运动,以车体前端的垂向振动加速度和构架前端的垂向振动加速度作为观测值,以线路的垂向不平顺作为输入,探索采用交互式多模型(IMM)方法对车辆1系、2系垂向减振器进行状态监测。结果表明:在IMM方法中,通过计算模型的概率以及参数的估计值,能够有效地诊断出1系、2系垂向减振器的故障;模型之间的马尔可夫概率转移矩阵会对估计精度产生影响,并会使估计结果产生一定的延迟。
The safety early warning and condition monitoring of G-series high-speed train is currently the focus and difficulty in the research field of high speed railway worldwide.The vertical dynamics model of a half-vehicle is established,considering the ups and downs of a car body,a bogie and two wheelsets,and the nodding movement of a bogie.The vertical vibration accelerations of the front ends of both the car body and the frame are taken as the observed values,and the vertical irregularity of the track as the input,the interactive multiple model(IMM)is used to monitor the conditions of primary and secondary vertical dampers.Results show that,the IMM method can effectively diagnose the faults of the primary and secondary vertical dampers by calculating the probability of the model and the estimated value of the parameters.The Markov probability transfer matrix between models has an impact on the estimation accuracy and causes certain delay in the estimation results.
作者
邢璐璐
XING Lulu(Locomotive&Car Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
2018年第6期119-125,共7页
China Railway Science
基金
中国铁路总公司科技研究开发计划课题(2017J001-A
2017J009-M)
关键词
交互式多模型
状态监测
减振器
故障诊断
马尔可夫概率转移矩阵
Interactive multiple model
State monitoring
Damper
Fault diagnosis
Markov probability transfer matrix