期刊文献+

一种新型旋流燃烧器内甲烷扩散燃烧特性 被引量:4

Methane Diffusion Combustion Performance in a Novel Cyclonic Combustor
下载PDF
导出
摘要 采用两步总包反应机理、标准亚网格应力模型与有限速率/涡耗散燃烧模型等对一种新型旋流燃烧器内甲烷-空气扩散燃烧过程进行大涡模拟.凭借旋流离心效应和涡旋效应来控制反应混合和火焰传播特性,实现了一种热流分布均匀、温度波动小的蓝色旋涡状火焰.此外,通过平面激光诱导荧光技术(OH-PLIF)对反应流的OH基分布进行定性测量.研究表明,燃烧核心区与壁面隔离,使得壁面具有自冷却的效应;切向速度沿径向分布呈现中心对称的双峰结构;高速射流经过突扩的喉部强烈吸卷周围的气流,对其起到预热作用,有利于燃料空气的混合和燃烧效率的提高. A new methane-air diffusion combustion process in a swirl combustor was simulated via a two-step overall package reaction mechanism,using the Lilly sub-grid stress and finite-rate/eddy-dissipation combustion models.Reaction mixing and flame propagation were controlled by the centrifugal and vortex effects of swirling flow.The results showed that a blue swirl flame with uniform heat flow distribution and low temperature fluctuation occurred.Furthermore,the OH distribution of the reaction flow was qualitatively measured using planar laserinduced fluorescence(OH-PLIF).The results suggest that the combustion core area was isolated from the wall,which induces a self-cooling effect in the wall.The radial distribution of tangential velocity presents a centrosymmetric double-peak structure.The methane-air mixture was sucked around the sudden expansion of the throat due to high-speed jet flows,which is beneficial to both the preheating and mixing of fuel-air and the improvement of combustion efficiency.
作者 孙婷 田力 宋金瓯 祁海鹰 李科 Sun Ting;Tian Li;Song Jin’ou;Qi Haiying;Li Ke(School of Energy and Environment,Inner Mongolia University of Science and Technology,Baotou 014010,China;State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China;Key Laboratory for Thermal Science and Power Engineering of Education,Tsinghua University,Beijing 100084,China)
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2018年第6期558-564,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51266008)
关键词 旋流燃烧器 大涡模拟 自冷却 蓝色火焰 vortex combustor large-eddy simulation self-cooling blue flame
  • 相关文献

参考文献3

二级参考文献27

  • 1Khelil A, Naji H, Loukarfi L et al (2009) Prediction of a high swirled natural gas diffusion flame using a PDF model. Fuel 88:374-381.
  • 2Yang W, Zhang J (2009) Simulation of methane turbulent swirling flame in the TECFLAM combustor. Appl Math Model 33:2818-2830.
  • 3Driscoll JF (2008) Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog Energy Combust Sci 34:91-134.
  • 4Chan CK, Lau KS, Chin WK et al (1992) Freely propagating open premixed turbulent flames stabilized by swirl. Proc Combust Inst 24:511-518.
  • 5Ji J, Gore JP (2002) Flow structure in lean premixed swirling combustion. Proc Combust Inst 29:861-867.
  • 6Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energ Combust Sci 32:93-161.
  • 7Ranga-Dinesh KKJ, Jenkins KW, Kirkpatrick MP et al (2010) Modelling of instabilities in turbulent swirling flames. Fuel 89: 10-18.
  • 8Schneider C, Dreizler A, Janicka J (2005) Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul Combust 74:103-127.
  • 9Galpin J, Naudin A, Vervisch L et al (2008) Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust Flame 155:247-266.
  • 10Freitag M, Janicka J (2007) Investigation of a strongly swirled unconfined premixed flame using LES. Proc Combust Inst 31:1477-1485.

共引文献10

同被引文献37

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部