期刊文献+

基于视频的烟雾检测系统——运用烟雾流动模型和时空能量分析的方法

Smoke Detection System Based on Video——Through the Analysis of Smoke flow Pattern and Spatial-temporal Energy
下载PDF
导出
摘要 在火灾发生的初始阶段,监测烟雾对于防止火灾至关重要。文章提出了一种基于时间特征的检测方法,即由光烟流动模式分析和时空能量分析提取的时间特征融合得到。一个特征向量是通过使用具有优选方向的Gabor滤波器组,利用纹理信息来确定烟雾的流动特征。此外,在具有时间差的图像中,应用空间频率的能量分析得到另一特征向量。最后,这些特征向量输入训练好的支持向量机(SVM)进行烟雾判别,提供准确的烟雾检测。根据实验数据可得,该算法特征提取简便,可以更快检测烟雾的发生,提高了烟雾检测效率。 In the initial stage of fire,monitoring smoke is very important for preventing fire.This paper proposes,a temporal feature extraction method,which is fused by light smoke flow pattern analysis and spatiotemporal energy analysis.A feature vector is obtained by using a Gabor filter bank with a preferred direction and using texture information.Besides,in the image with time difference,another feature vector is obtained by energy analysis of spatial frequency.Finally,these feature vectors are fed into support vector machine(SVM)to discriminate smoke and provide accurate smoke detection.According to the experimental videos,the features of algorithm are simple and easy to extract.It can detect smog quickly and improve the efficiency of smoke detection.
作者 冯磊 FENG Lei(Xingtai Polytechinic College,Xingtai,Hebei 054035,China)
出处 《邢台职业技术学院学报》 2018年第5期80-85,共6页 Journal of Xingtai Polytechnic College
基金 河北省重点研发计划自筹项目--"基于机器视觉的火灾烟雾检测预警系统" 项目编号:17275425
关键词 烟雾检测 光烟流分析 时空能量分析 支持向量机 Smoke detection Temporal features Optical smoke flow Support vector machines
  • 相关文献

参考文献1

二级参考文献13

  • 1Nakamasa Inoue, Koichi Shinoda. Q-Gaussian mixture models for image and video semantic indexing [J]. Journal of Visual Communication and Image Representation, 2013, 24 (8):1450-1457.
  • 2Yu C. Met Z, Zhang X. A real-time video fire flame and smoke detection algorithm [J]. Procedia Engineering. 2013, 62: 891-898.
  • 3Li W, Fu B, Xiao I., et al. A video smoke detection algo- rithm based on wavelet energy and optical flow eigen-values [J]. Journal of Software, 2013, 8 (1): 63-70.
  • 4Zhan X. Ma B. Gaussian mixture model on tensor field for vi- sual tracking [J]. Signal Processing Letters, 2012. 19 (11): 733-736.
  • 5Xue K, Liu Y, Gbolabo Ogunmakin. et al. Panoramic Gau ssian mixture model and large-scale range background substrac lion method for PTZ camera-based surveillance systems [J]. Machine Vision Applications. 2013, 24 (3): 477-492.
  • 6Ivanov VA. Interpolation algorithms in caleulating the frame- to-frame difference for detecting moving point objects [J]. Op- toelectronics, Instrumentation and Data Processing, 2007, 43 (3): 246-251.
  • 7Kintu Palel. Key frame extraction based on block based histo- gram difference and edge matching rate [J]. International Jour- nal of Scientific Engineering and Technology, 2012, 1: 23-30.
  • 8张显亭,陈树越,陈颖鸣.一种改进的复杂场景运动目标检测算法[J].传感技术学报,2009,22(8):1146-1149. 被引量:8
  • 9李喜来,李艾华,白向峰,蔡艳平,牛武泽.增量式特征基背景模型目标运动检测[J].传感技术学报,2010,23(9):1293-1297. 被引量:3
  • 10姚太伟,王慧琴,胡燕.基于小波变换和稀疏光流法的火灾烟雾检测[J].计算机工程,2012,38(6):204-206. 被引量:17

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部