期刊文献+

基于改进灰狼优化算法的自动导引小车路径规划及其实现原型平台 被引量:25

AGV path planning based on improved grey wolf optimization algorithm and its implementation prototype platform
下载PDF
导出
摘要 针对智能优化算法求解自动导引小车路径规划问题效率低且易早熟的缺陷,提出一种用于求解复杂环境下自动导引小车路径规划问题的改进灰狼优化算法。算法引入路径微调算子和邻域变异算子来提高灰狼优化算法的局部开发能力,又引入新的初始解生成算法提高初始种群的质量;采用改进的路径片段与障碍物相交判断算法来提高算法的运行效率,再采用新的避障算子来提高路径片段避开障碍物的效率。基于MATLAB GUI开发工具开发了带有多种智能优化算法的自动导引小车路径规划仿真原型平台,并与单种群遗传算法、多种群遗传算法和改进遗传算法进行对比,验证了改进灰狼优化算法求解自动导引小车路径规划的有效性。 Aiming at the inefficiency and premature of intelligent optimization algorithms solving the path planning problem of Automated Guided Vehicle(AGV),an improved Grey Wolf Optimization(GWO)algorithm was proposed for solving AGV path planning problems in complex environment,in which path fine-tuning operator and neighborhood mutation operator were introduced to improve the exploitation capability of GWO.A new initialization algorithm was further introduced to improve the quality of initial population,and an improved path segment and obstacle intersection judgment approach was employed to enhance the improved GWO.A new obstacle avoidance operator was proposed to improve the efficiency of path segments avoiding obstacles,and an AGV path planning prototype platform with multiple intelligent algorithms was developed by MATLAB GUI tools to verify the improved GWO compared with traditional genetic algorithms with single and multi-population strategy under different complex static environments.
作者 刘二辉 姚锡凡 刘敏 金鸿 LIU Erhui;YAO Xifan;LIU Min;JIN Hong(School of Mechanical and Automobile Engineering,South China University of Technology, Guangzhou 510640,China;Guangzhou Start To Sail Industrial Robot Co.,Ltd.,Guangzhou 510700,China;College of Engineering,South China Agricultural University,Guangzhou 510642,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2018年第11期2779-2791,共13页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51675186 51175187) 广东省科技计划资助项目(2017A030223002) 中央高校基本科研业务费资助项目(D2181830)~~
关键词 灰狼优化算法 路径微调算子 邻域变异算子 遗传算法 初始解生成算法 grey wolf optimization algorithm path fine-tuning operator neighborhood mutation operator genetic algorithms initialization method
  • 相关文献

参考文献3

二级参考文献30

  • 1张超勇,饶运清,李培根,刘向军.求解作业车间调度问题的一种改进遗传算法[J].计算机集成制造系统,2004,10(8):966-970. 被引量:53
  • 2饶运清,EFSTATHIOU Janet.基于信息熵的制造系统复杂性测度及其在调度中的应用[J].机械工程学报,2006,42(7):8-13. 被引量:38
  • 3肖本贤,齐东流,刘海霞,李善寿.动态环境中基于模糊神经网络的AGV路径规划[J].系统仿真学报,2006,18(9):2401-2404. 被引量:22
  • 4Khatib O. Real - time obstacle avoidance for manipulators and mobile robots [ J ]. The International Journal of Robotics Research, 1986,5 ( 1 ) :90 -98.
  • 5Lozano - P6rez T, Wesley M A. An algorithm for planning collision- free paths among polyhedral obstacles [ J]. Com- munications of the ACM, 1979,22 (10) :560- 570.
  • 6Mansor M A, Morris A S. Path planning in unknown environ- merit with obstacles using virtual window [ J ]. Journal of In- telligent and Robotic Systems, 1999,24 ( 3 ) : 235 - 251.
  • 7Simon D. The application of neural networks to optimal robot trajectory planning [J]. Robotics and Autonomous Systems, 1993,11(1) :23 -34.
  • 8Holland J H. Genetic algorithms and the optimal allocation of trials [J]. SIAM Journal on Computing,1973,2(2) :88 - 105.
  • 9Kennedy J. Particle swarm optimization encyclopedia of ma- chine learning [ M ]. US : Springer,2010.
  • 10Hsu C C, Hou R Y, Wang W Y. Path planning for mobile ro- bots based on improved ant colony optimization [ C ]. IEEE International Conference on Systems, Man and Cybernetics (SMC),IEEE,2013.

共引文献109

同被引文献207

引证文献25

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部