期刊文献+

一种适合于斜视TOPS SAR的改进PFA成像方法 被引量:3

An Improved PFA Imaging Method for Squinted TOPS SAR
下载PDF
导出
摘要 针对斜视循序扫描地形观测(TOPS)合成孔径雷达(SAR)成像模式,对广义极坐标格式算法(PFA)进行改进,提出了一种先线性走动校正(LRWC)后PFA插值的成像方法。利用LRWC显著降低了距离向与方位向的耦合,简化了距离单元徙动校正过程。走动校正后方位向采样依然是均匀的,因此方位向插值可采用Chirp-Z变换快速实现。对于波束扫描及走动校正引起的多普勒调频率的方位空变问题,采用方位非线性变标(ANCS)的方法进行统一校正,大幅提高了方位向的聚焦深度,扩大了可良好聚焦的场景范围。仿真和实测数据处理结果验证了所提方法的有效性。 For squinted terrain observation by progressive scans(TOPS)synthetic aperture radar(SAR)imaging mode,the generalized polar formation algorithm(PFA)is improved and an imaging algorithm,which firstly carries out the linear range walk correction(LRWC)and then applies the PFA interpolation,is proposed in this paper.The LRWC can effectively mitigate the range-azimuth coupling effect and simplify range cell migration(RCM)correction.In addition,after performing LRWC,the azimuth sampling interval is still uniform,thus the azimuth interpolation can be realized by Chirp-Z transform.For the azimuth-variation of Doppler rate induced by the antenna beam steering and LRWC,the azimuth nonlinear chirp scaling(ANCS)is implemented.Therefore,the azimuth focus depth is improved greatly and the scene size which can be well-focused is expanded.Both simulation and real data results verify the effectiveness of the proposed method.
作者 吴玉峰 张红波 叶少华 WU Yufeng;ZHANG Hongbo;ZHANG Hongbo(AVIC Leihua Electronic Technology Research Institute,Wuxi 214063,Jiangsu,China)
出处 《上海航天》 CSCD 2018年第6期18-23,共6页 Aerospace Shanghai
基金 装备预研共用技术和领域基金(61404130311)
关键词 合成孔径雷达 循序扫描地形观测 斜视模式 极坐标格式算法 线性距离走动校正 方位非线性变标 synthetic aperture radar(SAR) terrain observation by progressive scans(TOPS) squinted mode polar formation algorithm(PFA) linear range walk correction(LRWC) azimuth nonlinear chirp scaling(ANCS)
  • 相关文献

参考文献3

二级参考文献15

  • 1朱岱寅,朱兆达.方位扫描SAR区域成像研究[J].航空学报,2005,26(2):208-213. 被引量:8
  • 2明峰,洪峻,吴一戎.ScanSAR的Scalloping辐射误差研究[J].电子与信息学报,2006,28(10):1806-1808. 被引量:6
  • 3De Zan F and Guarnieri A. M TOPSAR: Terrain Observation by Progressive Scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2352-2360.
  • 4Meta A, Mittermayer J, Prats P, et al. TOPS imaging with TerraSAR-X: mode design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 759-769.
  • 5Bai Xia, Sun Jin-ping, Hong Wen, et al.. On the TOPS mode spaceborne SAR[J]. Science China (Information Sciences), 2010, 40(2): 468-480.
  • 6Prats P, Scheiber R, Mittermayer J, et al.. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770-780.
  • 7Meta A, Mittermayer J, and Scheiber R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1123-1136.
  • 8Rabiner L, Schafer R, and Rader C. The chirp z-transform algorithm[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2): 86-92.
  • 9Lanari R, Hensley S, and Rosen P A. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation[J]. IEE Proceedings Radar, Sonar and Navigation, 1998, 145(5): 254-261.
  • 10Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston, London, Artech House, 2005, Section 5 in Chapter 11.

共引文献48

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部