2ZHENG T, REIMERS J N, DAHN J R. Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium [J]. Phys Rev B, 1995, 51: 734-741.
3PAN D, WANG S, ZHAO B, et al. Li storage properties of disor- dered graphene nanosheets [J]. Chem Mater, 2009, 21 (14) : 3136- 3142.
4LIAN P, ZHU X, LIANG S, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batter- ies[J]. Electrochimica Acta, 2010, 55 : 3909-3914.
5YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282.
6MURUGAN A V, MURALIGANTH T, MANTHIRAM A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage [J]. Chem Mater, 2009, 21 (21) : 5004-5006.
7GUO P, SONG H, CHEN X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries[J]. Electrochem Commun, 2009, 11 (6): 1320-1324.
8WANG G, SHEN X, YAO J, et al. Graphene nanosbeets for en- hanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47(8): 2049-2053.
9MUKHERJEE R, THOMAS A V, KRISHNAMURTHY A, et al. Photothermally reduced graphene as high-power anodes for lithium-ion batteries[J]. ACS Nano, 2012, 6(9): 7867-7878.
10JANG B Z, LIU C, NEFF D, et al. Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices[J]. Nano Letters, 2011, 11(9): 3785-3791.