期刊文献+

自动识别技术在乳腺结节超声图像良恶性分类中的可行性研究 被引量:1

Study on the feasibility of automatic recognition technology based on depth learning for classification of benign and malignant breast nodules in ultrasound images
原文传递
导出
摘要 在中国,乳腺癌已成为女性最常见的恶性肿瘤之一,其死亡率已经超过宫颈癌,位居癌症病死率的前5名[1]。美国癌症协会发表的2016美国癌症统计数据也表明,乳腺癌是女性最常见的癌症,预计乳腺癌将独占女性全部新发病例的29%[2]。早期发现乳腺癌可以增加患者治疗的机会和提高患者的生存率[3-4];因此,乳腺癌的筛査及早期诊断十分必要。近年来,随着超声技术的不断发展,其在乳腺癌的早期诊断、乳腺良恶性病变的鉴别方面起着越来越重要的作用。其无辐射、无创、实时成像、价格低廉等特点,尤其对致密性乳房的癌症检出更敏感,弥补了乳腺钼靶检查的不足[5-6]。
出处 《中华医学超声杂志(电子版)》 CSCD 北大核心 2018年第10期779-782,共4页 Chinese Journal of Medical Ultrasound(Electronic Edition)
  • 相关文献

参考文献3

二级参考文献106

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献1175

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部