期刊文献+

基于二分图模型的主机行为分析

Host Behavior Analysis Based on Bipartite Graph Model
下载PDF
导出
摘要 近年来,随着网络规模的不断增长、网络应用的多样化、加密数据传输技术的逐步成熟,终端主机行为的分析也越来越复杂。文章提出一种基于图模型的主机行为分析方法,利用社区检测来发现具有相似行为的终端主机,并通过引入Spark GraphX技术使得该方法具备可扩展性和实用性。实验结果表明,该方法可以有效分析具有相似行为的主机群体,降低了大规模网络异常检测的复杂度。 In recent years,with the continuous increase of the network scale,diversification of network applications and the gradual maturity of the encrypted data transmission technology,the analysis of the terminal host behavior have become more and more complicated.This paper presents a graph-based approach that uses community detection to discover end hosts with similar behavior.And the approach are scalable and practical by introducing Spark GraphX technology.The experimental results show that this method has strong validity and reference in the data analysis based on NetFlow,and can be referenced for large-scale network analysis.
作者 王劲松 南慧荣 张洪豪 WANG Jinsong;NAN Huirong;ZHANG Honghao(School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China;National Engineering Laboratory for Computer Virus Prevention and Control Technology,Tianjin 300457,China;Tianjin Key Laboratory of Intelligence Computing and Novel Sofware Technology,Tianjin 300384,China)
出处 《信息网络安全》 CSCD 北大核心 2018年第12期1-7,共7页 Netinfo Security
基金 国家自然科学基金[61272450]
关键词 图模型 NETFLOW 分布式计算 网络安全 社区检测 graph model NetFlow distributed computing network security community detection
  • 相关文献

参考文献4

二级参考文献29

  • 1穆祥昆,王劲松,薛羽丰,黄玮.基于活跃熵的网络异常流量检测方法[J].通信学报,2013,34(S2):51-57. 被引量:20
  • 2曾嘉,金跃辉,叶小卫.基于NetFlow的网络异常流量检测[J].微计算机应用,2007,28(7):709-713. 被引量:7
  • 3李先通,李建中,高宏.一种高效频繁子图挖掘算法[J].软件学报,2007,18(10):2469-2480. 被引量:35
  • 4Zander S, Nguyen T, and Armitage G. Automated traffic classification and application identification using machine learning[C]. Proceedings of the 30th IEEE Conference on Local Computer Networks, Sydney, Australia, 2005: 250-257.
  • 5Roughan M, Sen S, Spatscheck O, et al.. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[C]. Proceedings of ACM SIGCOMM Internet Measurement Conference, Taormina, Sicily, Italy, 2004: 135-148.
  • 6Williams N, Zander S, and Armitage G. A prelinfinary performance comparison of five machine learning algorithms for practical IP traffic flow classification[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(5): 5-15.
  • 7Karagiannis T, Papagiannaki K, and Faloutsos M. BLINC: multilevel traffic classification in the dark [C]. Proceedings of SIGCOMM, Philadelphia, PA, USA, 2005: 229-240.
  • 8Altman E, Nain P, and Shwart A. Predicting the impact of measures against P2P networks on the transient behaviors [C]. Proceedings of INFOCOM, Shanghai, 2011: 1440-1448.
  • 9Jin Zhi-gang, Wang Ying, and Wei Bo. P2P Botnets detection based on user behavior sociality and traffic entropy function[C]. Proceedings of Communications and Networks Consumer Electronics (CECNet), Yichang, 2012:1953-1955.
  • 10Saad S, Traore I, Ghorbani A, et al.. Detecting P2P botnets through network behavior analysis and machine learning [C]. Proceedings of Privacy, Security and Trust (PST), Montreal, QC, 2011: 174-180.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部