期刊文献+

改进的人工蜂群结合优化的随机森林的U2R攻击检测研究 被引量:2

Reseach on U2R Attacks Detection Based on Improved Artificial Bee Colony Combined with Optimized Random Forest
下载PDF
导出
摘要 针对入侵检测系统(IDS)对User-to-Root (U2R)类型攻击检测率低的问题,文章提出了一种改进的人工蜂群(ABC)算法结合优化的随机森林(RF)算法的攻击检测模型。该模型首先对传统ABC算法的初始化方法和搜索策略进行改进,优化传统RF算法对特征重要性得分的排序方式,然后将两种改进的算法相结合,进行U2R攻击检测。使用NSL-KDD数据集进行实验,结果表明,该攻击检测模型能够准确地提取攻击类型的最优特征集,对攻击数据进行分类预测,有效提高了IDS对U2R类型攻击的检测率。 Aiming at the problem of low detection rate of U2R attacks in IDS,this paper proposes a model that combined an improved artificial bee colony algorithm(ABC)with the optimized random forest(RF).Firstly,the model improved the initialization method and search strategy of the traditional ABC,optimized the method of ranking of feature importance scores in the traditional RF.Then the model combined the two improved algorithm.Experiments with NSL-KDD datasets show that the attack detection model based on the improved artificial bee combined with the optimization random forest algorithm(RF-IABC)can extract the optimal feature set of attack type accurately,then classify and predict the attack data,improve the detection rate of U2R type attacks by IDS effectively.
作者 翟继强 肖亚军 杨海陆 王健 ZHAI Jiqiang;XIAO Yajun;YANG Hailu;WANG Jian(School of Computer Science and Technology,IHarbin University of Science and Technology,IHarbin Heilongiang 150080,China)
出处 《信息网络安全》 CSCD 北大核心 2018年第12期38-45,共8页 Netinfo Security
基金 国家自然科学基金[61403109] 黑龙江省自然科学基金[F2016024] 黑龙江省教育厅科技面上项目[12531121]
关键词 入侵检测 U2R攻击 改进的人工蜂群 优化的随机森林 IDS U2R attacks improved artificial bee colony optimized random forest
  • 相关文献

参考文献5

二级参考文献52

  • 1郜燕,刘文芬.基于隐Markov过程的网络信任评估模型[J].四川大学学报(工程科学版),2015,47(3):101-107. 被引量:2
  • 2沈昌祥,张焕国,冯登国,曹珍富,黄继武.信息安全综述[J].中国科学(E辑),2007,37(2):129-150. 被引量:359
  • 3Zhao Jianhua,Li Weihua. Intrusion detection based on im- proved SOM with optimized GA[ J]. Journal of Comput- ers,2013,8(6) :1456 - 1463.
  • 4Xie Yi,Tang S,Xiang Y,et al. Resisting web proxy-based H3"FP attacks by temporal and spatial locality behavior[J]. IEEE Transactions on Parallel and Distributed Sys- tems,2013,24(7) :1401 - 1410.
  • 5Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models [ C ]//Gong L, Reiter M K. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA : IEEE, 1999 : 133 - 145.
  • 6Qiao Y,Xin X W,Bin Y,et al. Anomaly intrusion detec- tion method based on HMM[J]. Electronics Letters,2002, 38(13) :663 -664.
  • 7Cho S B ,Park H J. Efficient anomaly detection by model- ing privilege flows using Hidden Markov Model[J]. Com- puters & Security,2003,22( 1 ) :45 - 55.
  • 8Zheng Ruijuan, Zhang Mingchuan, Wu Qingtao, et al. A- nalysis and application of bio-inspired multi-net security model[ J]. International Journal of Information Security, 2010,9(1) :1 -17.
  • 9Huang Jenyan, Liao Ien, Chung Yufang, et al. Shielding wireless sensor network using Markovian intrusion detec- tion system with attack pattern mining [ J ]. Information Sciences,2013,231 : 32 - 44.
  • 10周星,彭勤科,王静波.基于两层隐马尔可夫模型的入侵检测方法[J].计算机应用研究,2008,25(3):911-914. 被引量:4

共引文献84

同被引文献27

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部