期刊文献+

基于不连续激励函数的时滞分数阶复杂网络的牵制同步方法

Pinning synchronization for delayed fractional-order complex neural networks with discontinuous activation functions
下载PDF
导出
摘要 针对复杂网络节点庞大、计算复杂、控制成本高等问题,提出具有不连续激励函数和时滞的分数阶复杂网络的牵制同步方法。采用牵制控制方法,牵制系统的部分关键节点,进而控制整个网络。利用分数阶李雅普诺夫稳定性方法,设计一种新型的牵制反馈控制器,得到分数阶复杂网络同步准则。仿真实验证明所了本方法的有效性。 Aiming at the problems of complex networks such as complex network nodes,computational complexity and control costs etc,the pinning synchronization strategy of the fractional-order time delayed complex networks with discontinuous activations is investigated.Based on fractional Lyaponov stability theory,a novel pinning feedback controller is designed to obtain the synchronization criteria of the fractional-order complex networks and control the entire network by pinning the key nodes.
作者 于婷 伍锡如 YU Ting;WU Xiru(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Key Laboratory for Nonlinear Circuit and Optical Communication,Guangxi Normal University,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2018年第5期411-416,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61603107) 广西自然科学基金(2015GXNSFAA139297) 广西自动检测技术与仪器重点实验室基金(YQ16108) 省部共建药用资源化学与药物分子工程国家重点实验室基金(NCOC2016-B01) 桂林电子科技大学研究生教育创新计划(2017YJCX88 2017YJCX96 YCSW2017144)
关键词 分数阶 不连续激励函数 牵制同步 复杂网络 时滞 fractional-order discontinuous activations pinning synchronization complex neural networks time-delay
  • 相关文献

参考文献6

二级参考文献66

  • 1U.E.VINCENT,R.K.ODUNAIKE,J.A.LAOYE,A.A.GBINDINNINUOLA.Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator[J].控制理论与应用(英文版),2011,9(2):273-277. 被引量:4
  • 2Grigoriev R O, Cross M C, Schuster H G. Pinning control of spatiotemporal chaos[J]. Physcial Review Letters, 1997, 79(15): 2795-2798.
  • 3Arenas A, Diaz-Guilera A, Kurths J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469: 93-153.
  • 4He G M, Yang J Y. Adaptive synchronization in nonlinearly coupled dyrmmical networks[J]. Chaos, Solitons and Fractals, 2008, 38: 1254-1259.
  • 5Zou Y, Chen G. Choosing effective controlled nodes for scale-free networks synchronization[J]. Physica A, 2009, 388(14): 2931-2940.
  • 6Wang L, Dai H P, Dong H, et al. Adaptive synchronization of weighted complex dynamical networks through pinning[J]. The European Physical J B, 2008, 61: 335-342.
  • 7Wang X E Chen G R. Pinning control of scale-free dynamical networks[J]. Physcia A, 2002, 310(3/4): 521- 531.
  • 8Li X, Wang X E Chen G R. pinning a complex dynamical networks to its equilibrium[J]. IEEE Trans on Circuits and System, 2004, 51(10): 2074-2087.
  • 9Yu W W, Chen G R, Lu J H. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45: 429-435.
  • 10Porfiri M, Bemardo M D. Criteria for global pinning controllability of complex networks[J]. Automatica, 2008, 44: 3100-3106.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部