摘要
针对模型未知的运动系统的控制问题,提出一种基于Actor-Critic强化学习的智能控制方法。该方法由两个神经网络构成,Actor为基于概率的动作执行器,而Critic则对Actor的每一个动作进行评价以修正Actor的权值,Critic则通过环境反馈的得分进行评价标准更新,整体算法通过多次探索学习获得收敛。文中设计的Actor-Critic算法在MATLAB平台上对模型未知的一级倒立摆进行仿真实验,该算法能够在多次尝试之后,实现倒立摆平衡。
出处
《武汉冶金管理干部学院学报》
2018年第4期88-90,共3页
Journal of Wuhan Metallurgical Manager's Institute