期刊文献+

利用测地距离的三维人脸定位算法 被引量:1

Algorithm of 3D Face Location Using Geodesic Distance
下载PDF
导出
摘要 针对传统的二维人脸定位,无法克服旋转、表情、姿态等因素带来的问题,同时传统定位算法的准确率较低,算法在三维人脸模型的基础上,加入测地距离,提出利用测地距离的三维人脸定位算法。首先输入待检测的三维人脸图像,对其进行维纳滤波预处理,在预处理后的图像中进行鼻尖点定位,进而找到人脸的位置,在待检测图像中标记所得到的人脸区域。算法在三维人脸库FRGC和BU-3DFE上进行实验,利用深度信息定位方法和SPIDER特征点定位方法进行对比,实验结果表明本算法的定位准确率更高,鲁棒性更强。 The traditional two-dimensionnal face positoning unable overcome the rotation,expression,posture,and own a low accuracy in the location.We join the geodesic distance on the3D face modle and proposed the algorithm of three-dimension location using geodesic distance.We use wiener filtering to preprocess the3-dimentional face datas for the detecting image and confirm the location of the face by finding the location of nose point in the preprocessing image called nose tip location.Then we unify the human faces to the same coordinate frame.Finally,and mark the face region to be detected in the resulting image.The algorithm makes the experiment on FRGC face database and BU-3DFE face database,uses the depth information positioning method and spiders feature point positioning methods for comparing.The experimental results show that our algorithm of positioning accuracy is higher,stronger and has good robustness.
作者 林璇玑 林克正 孙一迪 魏颖 LIN Xuan-ji;LIN Ke-zheng;SUN Yi-di;WEI Ying(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2018年第6期110-115,共6页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金(F2015040)
关键词 人脸定位 测地距离 维纳滤波 鼻尖点定位 face location geodesic distance wiener filtering nose tip location
  • 相关文献

参考文献8

二级参考文献106

  • 1王钲旋,李海军,周春光.高维空间中用计算街区和棋盘距离的线性组合代替计算欧氏距离[J].小型微型计算机系统,2004,25(12):2120-2125. 被引量:6
  • 2张广鹏,张艳宁,郭哲.基于精确主轴分析及ICP的三维人脸配准[J].计算机工程与应用,2006,42(29):62-64. 被引量:9
  • 3杜干,朱雯君.基于局部奇异值分解和模糊决策的人脸识别方法[J].中国图象图形学报,2006,11(10):1456-1459. 被引量:20
  • 4骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 5LOWE D Distinctive. Image Features from Scale-invariant Key- points [ J ]. International Journal on Computer Vision, 2004,60 (2) :91 - 110.
  • 6KEY. SUKTHANKAR R. PCA-SIFT:A More Distinctive Repre- sentation for Localimage Descriptors [ C ]//Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,2004:506 - 513.
  • 7陈志华,吴彩荣,赵建锋,等.SIFT算法的介绍和应用[C].南宁:广西计算机学会2008年年会论文集,2008:163-167.
  • 8Wright J, Ma Y, Mairal J,et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE,2010,98(6) 1031-1044.
  • 9Li Y, Yu Z, B i N, et al. Sparse representation for brain sig- nal processing: A tutorial on methods and applications [J]. IEEE Signal Processing Magazine, 2014,3] (3) : 96- 106.
  • 10Mohammadi M, Fatemizadeh E, Mahoor M. PCA-based di- ctionary building for accurate facial expression recogni- tion via sparse representation[J]. Journal of Visual Com- munication and image Representation, 2014,25 ( 5 ) : 1082- 1092.

共引文献150

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部