摘要
为了研究因子von Neumann代数上完全保~*-Jordan零积的满射的刻画问题,依据双边完全保~*-Jordan零积和双边2-保~*-Jordan零积的定义,采用完全保持的方法,证明了如果Φ是von Neumann代数A到B的一个满射,则Φ是线性或共轭线性~*-同构的非零常数倍。
In order to characterize the maps completely preserving*-Jordan zero-products on factor von Neumann algebras,according to the definition of bilateral complete preserving*-Jordan zero-products and bilateral2-preserving*-Jordan zero-products,taking a completely preserve approach,it is proved that ifΦis a surjection of von Neumann algebra A to B,thenΦis the non-zero scalar multiple of linear or conjugate linear*-isomorphism.
作者
刘红玉
霍东华
LIU Hong-yu;HUO Dong-hua(School of Mathematical Sciences, Mudanjiang Normal University, Mudanjiang 157012, China)
出处
《哈尔滨理工大学学报》
CAS
北大核心
2018年第6期151-154,共4页
Journal of Harbin University of Science and Technology
基金
黑龙江省教育厅科研备案项目(1351MSYYB015)
牡丹江师范学院青年一般项目(QN2018006)