期刊文献+

低空无人机影像自动相对定向 被引量:1

Automatic Relative Orientation Method of Low-Altitude UAV Image
下载PDF
导出
摘要 针对传统无人机影像相对定向方法迭代不收敛和自动化程度较低的问题,本文提出了一种自动化程度更高且能有效收敛的方法。首先使用SIFT算法自动提取特征点,通过RANSAC算法剔除错误匹配的点并迭代计算基本矩阵,然后在理论上推导了基本矩阵及本质矩阵和相对定向元素的关系,从而导出相对定向元素的解,以此为初始值,利用严格相对定向模型迭代求解相对定向元素的值,直到其结果收敛为止。最后经过实验对比分析了小倾角和大倾角的无人机影像相对定向结果,实验证明了本文方法的有效性和可用性。 In view of the problem that the traditional UAV image relative orientation method is not converge and the degree of automation is low,this paper proposes an automaticandconvergent method.At first,we automatically extract feature points by using scale-invariant feature transformalgorithm,thenwe match key points and eliminates the mismatched points and iteratively calculates the fundamental matrix by using RANSAC.Secondly,in this paper,the relationship between the fundamental matrix and the essential matrix and the relative orientation elements is theoretically derived.Thereby,the result of the relative orientation elements are derived.Taking the result as initial value,we use the strict relative orientation model to iteratively calculate the value of the relative orientation elements until result converges.Finally,we make a set of comparative experiments about large dip and small dipUAV image and get relative orientation elementfrom fundamental matrix.Taking the result as the initial value for traditional relative orientation model,we get a more accurate result.The experiments results show that the method of this paper is effective and usable.
作者 郭岚 陈明杰 GUO Lan;CHEN Mingjie(College of Geomatics, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China)
机构地区 西安科技大学
出处 《北京测绘》 2018年第12期1483-1488,共6页 Beijing Surveying and Mapping
基金 国家自然科学基金青年科学基金项目(41501571)
关键词 尺度不变特征变换 无人机(UAV) 相对定向 基本矩阵 本质矩阵 scale-invariant feature transform Unmanned Aerial Vehicle (UAV) relative orientation fundamental matrix essential matrix
  • 相关文献

参考文献5

二级参考文献62

共引文献59

同被引文献3

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部