期刊文献+

航空发动机金属海绵通风器分离特性数值研究 被引量:1

Separation characteristic Numerical Simulation of Air-oil Separator with Metal Foam in Aero-engine
下载PDF
导出
摘要 建立了一套金属海绵分离特性的数值研究方法。以金属海绵和金属海绵通风器为研究对象,采用体心立方模型作为金属海绵的简化模型;采用N-S方程求解流场,运用DPM模型对研究对象的油气分离特性进行了数值计算;并通过实验数据验证了该方法的有效性和可靠性。在此基础上,分析了不同的金属海绵结构参数、不同的通风器工况对分离特性的影响。结果表明,金属海绵有较大的孔密度和较小的孔隙率时,对油滴的分离效率更高;而金属海绵通风器的转速和入口流量较大时,对油滴的分离效率更高。研究发现,金属海绵通风器对尺寸很小的油滴有很好的分离效率并具有更好的综合性能。 A numerical method for the separator s filtration of metal foam was established.Metal foam and separator of metal foam are studied.The body-centred cubic model was used to simplify the structure of metal foam,the N-S equations were applied to solve the flow field,and oil and gas separation characteristic was computed by DPM model.The computational method was validated by experimental data from literature.On this basis,the influence of different metal foam structural parameters and different air-oil separator working conditions on the separation characteristics was analyzed.The results show that metal foam with higher the pores per inch(PPI)and lower porosity has better performance of filtration.It is also found that when the separator rotates faster or works with higher flow rate,the separator performs better in filtering oil drops.Separator s filtration of metal foam have good separation efficiency for small size oil droplets and have better overall performance.
作者 李静 刘振侠 张丽芬 LI Jing;LIU Zhen-xia;ZHANG Li-fen(School of Power and Energy,Northwestern Polytechnical University,Xi'an 710072,China)
出处 《科学技术与工程》 北大核心 2018年第35期224-229,共6页 Science Technology and Engineering
基金 中国航空科学基金会(201400453006)资助
关键词 金属海绵 通风器 体心立方 分离效率 孔隙率 孔密度 metal foam air-oil separator body-centred cubic model filtration efficiency porosity the pores per inch
  • 相关文献

参考文献4

二级参考文献77

  • 1邱海平,施明恒.泡沫铝翅片传热和流动特性的实验研究[J].工程热物理学报,2005,26(6):1016-1018. 被引量:17
  • 2白敏丽,薛莹莹,吕继组,牛玲.隔热材料导热系数的数值模拟预测[J].热科学与技术,2007,6(2):136-140. 被引量:9
  • 3Maxwell J C. A Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873:365.
  • 4Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos Mag, 1892, 34.. 481.
  • 5Hunt M L, Tien C L. Effects of thermal dispersion on forced convection in fibrous media. Int J Heat Mass Transfer, 1988, 31 (2) ; 301.
  • 6Tien C L, Vafai K. Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation. AIAA Prog Ser,1979, 65:135.
  • 7Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams. ASME J Heat Transfer, 1999, 121:466.
  • 8Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal, lnt J Heat Mass Transfer, 2001, 44:827.
  • 9Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams. Int J Heat Mass Transfer,2002, 45:1017.
  • 10Calimidi V V, Mahajan R L. Forced convection in high porosity metal foams. ASME J Heat Transfer,2000, 122:557.

共引文献51

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部