期刊文献+

基于改进LeNet-5网络的交通标志识别方法 被引量:12

Traffic Sign Recognition Method Based on Improved LeNet-5 Network
下载PDF
导出
摘要 针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输入批量样本进行规范化处理;同时改用性能更好的Relu激活函数,并使用全局池化层代替全连接层,合理改变卷积核的大小和数目。研究结果表明,改进LeNet-5网络能够有效解决过拟合和梯度消失等问题,具有较好的鲁棒性;网络识别率达到98. 5%以上,相比CNN (convolutional neural network)+SVM (support vector machine)提高了约5%,比传统的LeNet-5网络提高了3%。可见,改进后的LeNet-5网络图像识别的准确率得到显著提高。 For the traditional LeNet-5 convolution neural network used in traffic signs and other kinds of recognition tasks,the problems such as low recognition accuracy,easy network over-fitting and gradient disappearance are improved.Inception convolution module group was cited to extract rich features of the target while increasing the depth of the network,the BN(batch normalization)layer was introduced to normalize the input batch samples to improve the input of the neural network.At the same time,the better Relu activation function was used,and the global pooling layer was used instead of the full connection layer,and the size and number of convolution kernels were reasonably changed.The research results show that the improved LeNet-5 network can effectively solve the problems of over-fitting and gradient disappearance,and has better robustness.At the same time,compared with CNN(convolutional neural network)+SVM(support vector machine)and traditional LeNet-5 network,the accuracy of the improved network classification can be up to 98.5%,which is 5%higher than CNN+SVM and 3%higher than traditional LeNet-5 network.The accuracy of image recognition is improved significantly.
作者 汪贵平 盛广峰 黄鹤 王会峰 王萍 WANG Gui-ping;SHENG Guang-feng;HUANG He;WANG Hui-feng;WANG Ping(School of Electronic and Control Engineering, Chang’an University,Xi’an 710064, China;Shaanxi Road Traffic Intelligent Detection and Equipment Engineering Technology Research Center, Xi’an 710064, China)
出处 《科学技术与工程》 北大核心 2018年第34期78-84,共7页 Science Technology and Engineering
基金 国家自然科学基金(61402052) 陕西省科技计划[重点产业创新链(群)](2018ZDCXL-GY-05-04) 长安大学中央高校基本科研业务费专项资金(300102328204 300102328101 300102328501)资助
关键词 交通标志 LeNet-5网络 卷积神经网络 准确率 traffic signs LeNet-5 net work convolutional neural network accuracy
  • 相关文献

参考文献6

二级参考文献32

  • 1汪云九,崔翯,齐翔林.BP学习网络中权值的感受野型初始化研究——Ⅰ.对收敛速度的影响[J].自然科学进展(国家重点实验室通讯),1996,6(3):346-350. 被引量:7
  • 2BHARGAV K, AHMED A, PANDEY S, et al. Focused matrix factorization for audience selection in display advertising[C]// Data Engineering (ICDE), 2013 IEEE 29th International Conference on, Brisbane, Australia: IEEE, 2013 :386 -397.
  • 3SHAN Lili, LEI Lin, DI Shao, et al. CTR Prediction for DSP with Improved Cube Factorization Model from Historical Bidding Log[M]II C K Loo, et al (Eds.): Neural Information Processing, Switzerland : Springer ,2014,8836: 17 - 24.
  • 4OUVIER C, ZHANG Ya. A dynamic hayesian network click model for web search ranking[C]I IProceedings of the 18th international conference on World wide web, Madrid: ACM,2009: 1 -10.
  • 5DEEPAYAN C, AGARWAL D,JOSIFOVSKI V. Contextual advertising by combining relevance with click feedback[C] IIProceedings of the 17th international conference on World Wide Web, Beijing: ACM,2008:417 -426.
  • 6WU Kuanwei, FERNG C S, HO C H, et al. , A two - stage ensem- ble of diverse models for advertisement ranking in KDD Cup 2012[J]. KDDCup, 2012.
  • 7DAVE K S , VARMA V. Learning the click - through rate for rarel new ads from similar ads[C]// Proceedings of the 33 rd international ACM SIGIR conference on Research and development in information retrieval, Geneva, Switzerland:ACM,2010.
  • 8ZHANG Ying,JANSEN BJ , SPINK A. Identification offactors predicting clickthrough in Web searching using neural network analysis[J].Journal of the American Society for Information Science and Technology, 2009, 60(3): 557 -570.
  • 9YUAN Guoxun, HO C H, UN CJ. An improved glmnet for 11 - regularized logistic regression[J]. TheJournal of Machine Learning Research, 2012, 13 (1 ) : 1999 - 2030.
  • 10FAWCETT T. ROC graphs: Notes and practical considerations for researchers[J]. Machine learning, 2004, 31: 1 - 38.

共引文献88

同被引文献83

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部