期刊文献+

电选粉煤灰颗粒图像识别与烧失量预测模型 被引量:3

Image recognition and ignition loss prediction model for triboelectrostatic beneficiation of fly ash particles
下载PDF
导出
摘要 在相同光照条件下,运用MATLAB软件控制工业相机获取不同烧失量粉煤灰的图像信息,根据粉煤灰中不同组分对于光反射的差异性,提取脱炭粉煤灰不同组分的图像特征参数,利用极限学习机神经网络建立烧失量与图像特征的数学模型,对比烧失量的预测效果获得最佳的激活函数,实现脱炭粉煤灰烧失量的在线快速检测。结果表明,极限学习机建立的预测模型能够准确识别电选粉煤灰的图像特征,快速获得粉煤灰烧失量数据,准确度高,可用于工业生产中电选粉煤灰烧失量的快速在线检测。 Under the same lighting conditions,the MATLAB software was used to control the industrial camera in order to obtain the image information of the different ignition loss for fly ash.Taking into account the light reflectance differences of different components in the fly ash,extraction of different components of the triboelectrostatic beneficiation fly ash Image feature parameters,the extreme learning machine neural network was used to establish a mathematical model between the ignition loss and image characteristics,and the best activation function was got by comparing the prediction effect of loss on ignition,and the on-line rapid detection of the ignition loss was realized.The results show that the prediction model established by extreme learning machine can accurately identify the image characteristics,and quickly obtain the the ignition loss of fly ash.The extreme learning machine is high precision,and it provides a technical reference for the rapid online testing of the fly ash ignition loss in industrial production.
作者 陈师杰 李海生 陈英华 温晓龙 章新喜 孙猛 陈明 CHEN Shijie;LI Haisheng;CHEN Yinghua;WEN Xiaolong;ZHANG Xinxi;SUN Meng;CHEN Ming(School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China;Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China;The First Mining Company of China Pingmei Shenma Group, Pingdingshan 467000, China)
出处 《中国粉体技术》 CAS CSCD 2018年第6期30-35,共6页 China Powder Science and Technology
基金 国家自然科学基金项目 编号:51674259
关键词 粉煤灰 烧失量 图像特征 数学模型 极限学习机 fly ash loss on ignition image characteristics mathematical mode extreme learning machine
  • 相关文献

参考文献5

二级参考文献23

  • 1龚文勇,张华.电选粉煤灰脱碳技术的研究[J].粉煤灰,2005,17(3):33-36. 被引量:9
  • 2禹建丽,黎娅.基于人工神经网络的粮食产量预测模型[J].河南农业科学,2005,34(7):44-46. 被引量:16
  • 3吴健康.The Analysis of Digital Image(数字图像分析)[M].Bejing:Peoples Post and Telecommunications Press,1989.245—251.
  • 4刘文礼.The Digital Image Processing for Coal Flotation Froth(煤泥浮选泡沫的数字图像处理):[dissertation](博士后研究报告)[R].Beijing:China University of Mining and Technology(Beijing Campus),2000..
  • 5Moolman D W, Eksteen J J, Aldrich C. The significance of Flotation froth Appearance for Machine Vision Control. Miner.Process, 1996, 48:135-158.
  • 6Woodbum E T, Stockton J B, Robbins D J. Vision - based Charaeterization of Three-phase Froths. In. Proceedings of Intemational Colloquium- Developments in Froth Flotation. South Africa Institute of Mining and Metallurgy, 1989, 1-30.
  • 7Symonds P J, De Jager G. A Technique for Automatically Segmenting Images of the Surface Froth Structures That Are Prevalent in Flotation Cells. In. Proceedings of the 1992 South African Symposium on Communications and Signals processing, Rondebosch, 1992. 111-115.
  • 8Moolman D W, Aldrich C, van Deventer J S J. Digital Image Processing as a Tool for On - line Monitoring of Froth in Flotation Plants. Mineral Engineering, 1994, 7(9): 1149-1164.
  • 9Aldrich C, Moolman D W, van Deventer J S J. Characterization of Flotation Processes with Self- organizing Neural Nets. Chem.Eng. Comun. , 1995, 139:25-39.
  • 10Chengjun Sun, Willian G Wee. Neighboring Gray Level Dependence Matrix for Texture Classification. Computer Vision,Graphics, and Image Processing, 1983, 23:341-352.

共引文献86

同被引文献15

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部