期刊文献+

基于改进PCA的蛋白质O-糖基化位点的预测

Prediction of the Protein O-glycosylation by Improved Principal Component Analysis
下载PDF
导出
摘要 提出了改进的主成分分析(IPCA)的方法,结合支持向量机(SVM)对蛋白质O-糖基化位点进行预测。IPCA克服了传统主成分分析(PCA)寻找全局主要成分的不足,对类内样本进行加权,在保护局部结构的前提下,消除了变量之间的相关性,提取出具有局部特征的主要成分。然后,在特征空间中用SVM进行分类(预测)。实验结果表明,IPCA+SVM方法是预测糖基化位点行之有效的方法。 To improve the prediction accuracy of O-glycosylation sites,a new method of improved principle component analysis(IPCA)was proposed.At first,next the feature of the original data were extracted by IPCA,IPCA protects the local structure of multimodal data by weighting the data in the same class;then the prediction(classification)was done in feature space by Support Vector Machines(SVM).The results indicate that the performance of IPCA+SVM is viable and effect.
作者 杨雪梅 YANG Xue-mei(School of Mathematics and Information Science,Xianyang Normal University,Xianyang 712000,China)
出处 《价值工程》 2018年第36期194-196,共3页 Value Engineering
基金 国家自然科学基金青年项目(61501388)
关键词 预测 蛋白质 改进主成分分析 SVM prediction protein improved principal component analysis(IPCA) Support Vector Machine(SVM)
  • 相关文献

参考文献3

二级参考文献29

  • 1Julenius K, Molgaard A, Gupta R, Brunak S. Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites[J]. Glycobiology, 2004, 15: 153-164.
  • 2Li S, et al. Predicting O-glyeosylation sites in mammalian proteins by using SVMs[J]. Computational Biology and Chemistry, 2006, 30: 203-208.
  • 3Nishikawa I, Sakamoto H, Nouno I, Iritani T, Sakakibara K, Ito M. Prediction of the O-glycosylation sites in protein by layered neural networks and support vector machines [J ]. Lecture Notes in Artificial Intelligence, Springer, LNAI 4252, 2006,Ⅱ : 953-960.
  • 4Xue-mei Yang, Yen-Wei Chen. Masahiro ito and ikuko nishikawa, principal component analysis of O-linked glycosylation sites in protein sequence[J]. Third International Conference on IIHMSP, 2007, Ⅰ : 121-126.
  • 5Yen-Wei Chen, Xue-mei Yang, Ito M, Nishikawa I. Pattern analysis and prediction of O-linked glycolsylated sites in protein by principal component subspace analysis[J]. Lecture Notes in Artificial Intelligence, Springer, LNAI 4693, 2007, Ⅱ: 326-334.
  • 6http://www. ebi. uniprot. org/.
  • 7飞思辩技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2005:103.
  • 8NISHIKAWA I, SAKAMOTO H, NOUNO I, et al. Prediction of the O-glycosylation sites in protein by layered neural networks and support vector machines [ M]. Berlin: Springer, 2006:953 -960.
  • 9SASAKI K, NAGAMINE N, SAKAKIBARA Y. Support vector machines prediction of N- and O-glycosylation sites using whole sequence information and subcellular localization[ J]. IPSJ Transactions on Bioinformatics, 2009(2) : 25 - 35.
  • 10JULENIUS K, MOLGAARD A, GUPTA R, et al. Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites[ J]. Glycobiology, 2004(15) : 153 - 164.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部