摘要
梯形中智数是中智数的一个扩展,其主要特点是将中智数的真实程度、不确定程度以及谬误程度以梯形模糊数的形式表示.对于其集成问题,文中给出了梯形中智数两个新的集成算子,即梯形中智数有序加权几何(TNNOWG)算子以及梯形中智数组合几何(TNNHG)算子,研究了这些算子所具有的性质.并且根据实例说明了所提出的算子的合理性.进一步地给出了一种属性权重未知且属性值以梯形中智数表示的多属性群决策方法.最后通过实例分析验证了所提出的方法的有效性.
A trapezoidal neutrosophic number is a generalization of neutrosophic number.Its main feature is to express the truth-membership,indeterminacy-membership and falsity-membership in trapezoidal fuzzy numbers.For this aggregation problem,two new aggregation operators are developed in this paper,such as trapezoidal neutrosophic number ordered weighted geometric(TNNOWG)operator and trapezoidal neutrosophic number hybrid geometric(TNNHG)operator,the properties of these operators are studied.The rationality of the proposed operator is illustrated by an example.Moreover,a multiple group decision making method with attribute weighted are completely unknown and attribute valued are trapezoidal neutrosophic numbers is given.Finally,an illustrative example show the effectiveness of the proposed approach.
作者
莫炯梅
黄韩亮
MO Jiong-mei;HUANG Han-liang(School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, China)
出处
《佳木斯大学学报(自然科学版)》
CAS
2018年第6期993-997,共5页
Journal of Jiamusi University:Natural Science Edition
基金
国家自然科学基金项目(11701089)
福建省自然科学基金(2018J01422)
福建省数学类研究生教育创新基地(1013-313009)
关键词
梯形中智数
集成算子
群决策
trapezoidal neutrosophic set
aggregation operators
group decision making