期刊文献+

用于CT心脏分割的几种超像素过分割和块合并的方法比较

Comparison of Several Methods of Superpixel-Based over-Segmentation and Region Merging for Cardiac CT Segmentation
下载PDF
导出
摘要 针对从CT图像中提取心脏结构信息还是一个尚未解决的问题,本文利用超像素思想对CT图像进行分割。本文利用4种方法(Ncut算法、熵率、简单线性迭代、均值漂移)进行超像素过分割,并进行了量化比较。进一步通过动态融合方法和谱聚类方法得到分割结果。在动态融合方法中设计了一种相似性度量的计算方法,并对两种合并方法进行了比较。实验表明本文提出的方法用于CT心脏图像的分割是可行的。在四种超像素过分割方法中,简单线性迭代运行速度较快,在各项评价指标中都比较不错。动态融合方法和谱聚类的合并准确性都较高,但谱聚类的运算速度远快于超像素的动态合并。 To tackle the unresolved problem of extracting cardiac structure information from CT images,this paper uses superpixel paradigm to segment CT images.In this paper,four methods(N-cut algorithm,entropy rate,simple linear iterative clustering,mean shift)are used to perform superpixel-based over-segmentation and their quantitative comparison is performed.The segmentation results are obtained by further dynamic fusion method and spectral clustering method.A calculation method of similarity measure is designed in the dynamic fusion method,and the two region merging methods are compared.Experiments show that the proposed method is feasible for segmentation of CT cardiac images.Among the four superpixel-based over-segmentation methods,the simple linear iterative clsutering runs faster and is perfoming well in all evaluation indicators.The accuracy of both dynamic fusion method and spectral clustering is good,but the spectral clustering operation speed is much faster than the dynamic fusion.
作者 张耀楠 吴秋实 何颖 安晓莉 ZHANG Yao-nan;WU Qiu-shi;HE Ying;AN Xiao-li(College of Electronics and Information Engineering, Siyuan University, Xi'an Shaanxi 710038;Sino-Dutch Biomedical and Information Engineering School,Northeastern University, Shenyang Liaoning 110169)
出处 《数字技术与应用》 2018年第10期63-66,68,共5页 Digital Technology & Application
基金 陕西省自然科学基础研究计划(项目批准号:2017JM8085) 陕西省教育厅科学研究计划(17JK1074 17JK1076) 西安思源学院校级科研项目(XASY-B1801 XASY-B1701)
关键词 CT 医学图像 ADABOOST 图像分割 超像素 CT medical images Adaboost image segmentation superpixels
  • 相关文献

参考文献2

二级参考文献10

  • 1[1]X L Xie,G Beni.A validity measure for fuzzy clustering.IEEE Trans on Pattern Analysis and Machine Intelligence,1991,13(8):841-847
  • 2[2]Nyun-Sook Rhee,Kyung-Whan Oh.A validity measure for fuzzy clustering and its using in selecting optimal number of clusters.In:Proc of the 5th IEEE Int'l Conf on Fuzzy Systems in New Lrleans,1996.1020-1025
  • 3[3]J C Bezdek.Numerical taxonomy with fuzzy sets.Journal of Mathematical Biology,1974,1(1):57-71
  • 4[4]Benson S Y Lam,Hong Yan.A new cluster validity index for data with merged clusters and different densities.IEEE Int'l Conf on Systems,Man and Cybernetics,Hawaii,USA,2005
  • 5[5]Trevor Hastie,Robert Tibshirani,Guenther Walther.Estimating the number of data clusters via the Gap statistic.Stanford University,Tech Rep:208,2000
  • 6[7]Baoding Liu,Augustine o Esogbue.Cluster validity for fuzzy criterion clustering.IEEE Int'l Conf on Systems,Man and Cybernetics,Vancouver,Canada,1995
  • 7王磊,段会川.Otsu方法在多阈值图像分割中的应用[J].计算机工程与设计,2008,29(11):2844-2845. 被引量:93
  • 8高尚兵,周静波,严云洋.一种新的基于超像素的谱聚类图像分割算法[J].南京大学学报(自然科学版),2013,49(2):169-175. 被引量:13
  • 9王春瑶,陈俊周,李炜.超像素分割算法研究综述[J].计算机应用研究,2014,31(1):6-12. 被引量:116
  • 10陈莹兰,陈秀宏.基于测地线的超像素谱聚类彩色图像分割[J].计算机工程与应用,2015,51(23):155-159. 被引量:4

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部