期刊文献+

求解一类多项四阶时间分数阶慢扩散系统的有限差分格式

A Finite Difference Scheme for Solving A Class of Multi-term Time Fractional Sub-diffusion System with the Spatial Fourth-order Derivative
下载PDF
导出
摘要 介绍求解多项四阶时间分数阶慢扩散方程的有限差分方法.利用L1公式逼近时间分数阶导数,用降阶法处理空间四阶导数项,再借助离散能量方法证明差分格式是无条件稳定的且在无穷范数下其收敛阶为O(τ2-β+h2),其中τ和h分别为时间方向和空间方向的步长,β是时间分数导数的最大阶.最后用数值实验验证所提出差分格式的精度和有效性. A finite difference scheme is derived for solving a class of multi-term time fractional sub-diffusion system with the spatial fourth-order derivative,where the L1 formula is used to approximate the time fractional derivatives and using the method of order reduction to deal with the spatial fourth-order derivative.Taking the discrete energy method,the unconditional stability and convergence of the scheme are proved and the convergence order is O(τ^2-β+h^2)in L∞-norm,whereτand h are temporal step size and spatial step size respectively.βis the maximum order of time fractional derivatives.Finally,a numerical example is demonstrated to show the accuracy and efficiency of the present method.
作者 刘蕊 高广花 袁安安 Liu Rui;Gao Guanghua;Yuan Anan(School of Science,Nanjing University of Posts and Telecommunications,Nanjing210023,China)
出处 《宁夏大学学报(自然科学版)》 CAS 2018年第4期315-321,326,共8页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(11401319)
关键词 多项 分数阶慢扩散方程 差分格式 收敛性 稳定性 multi-term fractional sub-diffusion equation difference scheme convergence stability
  • 相关文献

参考文献4

二级参考文献63

  • 1房少梅,黄端山,陈忠.图像处理中的数学问题[J].韶关学院学报,2005,26(9):1-3. 被引量:2
  • 2刘晨华,颜兵.基于小波变换和偏微分方程的图像去噪方法[J].山东理工大学学报(自然科学版),2007,21(3):94-96. 被引量:1
  • 3Baeumer B, Benson D A and Meerschaert M M. Advection and dispersion in time and space. Physica A, 2005, (350): 245-262.
  • 4Liu F, Anh V and Turner I. Numerical solution of the fractional advection-dispersion equation. The proceeding of an international conference on boundary and interior layers-computational ~nd asymptotic methods. Perth, Australia, 2002, 159-164.
  • 5Meerschaert M M and Tadjeran C. Finite difference approximations for fractional advectiondispersion flow equations. J. Comput. App. Math., 2004, (172): 65-77.
  • 6Miller K S and Ross B. An introduction to the fractional calculus and fractional differential equations. New York: John Wiley, 1993.
  • 7Momani S and Odibat Z. Numerical solutions of the space-time fractional advection-dispersion equation. Numer. Meth. Part. D. E., 2008, 6(24): 1416-1429.
  • 8Oldham K B and Spanier J. The fractional calculus. New York and London: Academic press, 1974.
  • 9Podlubny I. Fractional differential equations. New York: Academic press, 1999.
  • 10R,ichtmyer R D and Morton K W. Difference methods for initial-value problems. Krieger, 1994.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部