摘要
介绍求解多项四阶时间分数阶慢扩散方程的有限差分方法.利用L1公式逼近时间分数阶导数,用降阶法处理空间四阶导数项,再借助离散能量方法证明差分格式是无条件稳定的且在无穷范数下其收敛阶为O(τ2-β+h2),其中τ和h分别为时间方向和空间方向的步长,β是时间分数导数的最大阶.最后用数值实验验证所提出差分格式的精度和有效性.
A finite difference scheme is derived for solving a class of multi-term time fractional sub-diffusion system with the spatial fourth-order derivative,where the L1 formula is used to approximate the time fractional derivatives and using the method of order reduction to deal with the spatial fourth-order derivative.Taking the discrete energy method,the unconditional stability and convergence of the scheme are proved and the convergence order is O(τ^2-β+h^2)in L∞-norm,whereτand h are temporal step size and spatial step size respectively.βis the maximum order of time fractional derivatives.Finally,a numerical example is demonstrated to show the accuracy and efficiency of the present method.
作者
刘蕊
高广花
袁安安
Liu Rui;Gao Guanghua;Yuan Anan(School of Science,Nanjing University of Posts and Telecommunications,Nanjing210023,China)
出处
《宁夏大学学报(自然科学版)》
CAS
2018年第4期315-321,326,共8页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(11401319)
关键词
多项
分数阶慢扩散方程
差分格式
收敛性
稳定性
multi-term
fractional sub-diffusion equation
difference scheme
convergence
stability