期刊文献+

Research Progress on Heat Stress of Rice at Flowering Stage 被引量:19

Research Progress on Heat Stress of Rice at Flowering Stage
下载PDF
导出
摘要 Global warming has caused frequent occurrence of heat stress at the flowering stage of single-season rice in the Yangtze River region of China, which results in declines of spikelet fertility and yield in rice. Rice flowering stage is the most sensitive period to high temperatures, and therefore, the key for heat stress happening is the flowering stage coinciding with high temperature, which causes spikelet fertility decreasing in heat-sensitive varieties, and is the major factor for heat injury differences among various rice planting regions. With the development of rice breeding, temperature indexes for heat stress has been converted from daily maximum temperature of 35 oC to 38 oC with the stress duration of more than 3 d. During the flowering stage, anther dehiscence inhibition and low pollen shedding onto the stigma are two main reasons for spikelet fertility reduction under high temperatures. At panicle initiation stage, high temperatures aggravate spikelet degeneration, and destroy floral organ development. Various types of rice varieties coexist in production, and indica-japonica hybrid rice demonstrates the highest heat resistance in general, followed by indica and japonica rice varieties. In production, avoiding high temperature is the main strategy of preventing heat stress, and planting suitable cultivars and adjustment of sowing date are the most effective measures. Irrigation is an effective real-time cultivation measure to decline the canopy temperature during the rice flowering stage. We suggested that further study should be focused on exploring heat injury differences among different rice variety types, and innovating rice-planting methods according to planting system changes in rice planting regions with extreme heat stress. Meanwhile, high temperature monitor and warning systems should be improved to achieve optimal heat stress management efficiencies. Global warming has caused frequent occurrence of heat stress at the flowering stage of single-season rice in the Yangtze River region of China, which results in declines of spikelet fertility and yield in rice. Rice flowering stage is the most sensitive period to high temperatures, and therefore, the key for heat stress happening is the flowering stage coinciding with high temperature, which causes spikelet fertility decreasing in heat-sensitive varieties, and is the major factor for heat injury differences among various rice planting regions. With the development of rice breeding, temperature indexes for heat stress has been converted from daily maximum temperature of 35 oC to 38 oC with the stress duration of more than 3 d. During the flowering stage, anther dehiscence inhibition and low pollen shedding onto the stigma are two main reasons for spikelet fertility reduction under high temperatures. At panicle initiation stage, high temperatures aggravate spikelet degeneration, and destroy floral organ development. Various types of rice varieties coexist in production, and indica-japonica hybrid rice demonstrates the highest heat resistance in general, followed by indica and japonica rice varieties. In production, avoiding high temperature is the main strategy of preventing heat stress, and planting suitable cultivars and adjustment of sowing date are the most effective measures. Irrigation is an effective real-time cultivation measure to decline the canopy temperature during the rice flowering stage. We suggested that further study should be focused on exploring heat injury differences among different rice variety types, and innovating rice-planting methods according to planting system changes in rice planting regions with extreme heat stress. Meanwhile, high temperature monitor and warning systems should be improved to achieve optimal heat stress management efficiencies.
出处 《Rice science》 SCIE CSCD 2019年第1期1-10,共10页 水稻科学(英文版)
基金 financially supported by the National Key Research and Development Program of China(Grant No.2017YFD0300409) the National Natural Science Foundation of China(Grant No.31701374) the Special Fund for China Agricultural Research System(Grant Nos.CARS-01-22 and CARS-01-65) the Basic Research Foundation of National Commonweal Research Institute of China(Grant No.2017RG004-4)
关键词 FLOWERING STAGE heat stress SPIKELET FERTILITY high temperature YIELD VARIETY flowering stage heat stress spikelet fertility high temperature yield variety
  • 相关文献

参考文献7

二级参考文献84

共引文献186

同被引文献293

引证文献19

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部