期刊文献+

高阶间隔估计算法在网络流量监测中的应用研究

Research on High Order Interval Estimation Algorithm in Network Traffic Monitoring
下载PDF
导出
摘要 当前的网络流量监测方法比如报文抽样和时间间隔抽样,存在资源消耗大和精度低2个方面的问题,本文提出了一种高带宽及高传输速率情况下的流量监测方法,即以均匀分组采样方法为理论的高阶间隔估计算法﹒首先根据网络流量的动态变化,实时调整采样次数;再利用低阶采样数据及优化算法进行高阶估计;最后采用相对熵进行采样性能分析与估计﹒仿真结果表明,随着高阶间隔的逐渐增大,流量监测的精度相比报文采样和时间间隔采样得到逐步提高,而资源消耗却显著减少﹒ With the gradual increase of the network bandwidth and transmission speed the current network traffic monitoring methods such as packet sampling and time interval samplings,there are two problems in resource consumption and low precision.In this paper a method of high bandwidth and high transmission rate is proposed,that is a high order interval estimation algorithm based on uniform sampling method.According to the dynamic change of the network traffic,the sampling time is adjusted in real time.High order estimation using low order sampled data and optimization algorithm.Finally,the relative entropy is used to analyze and estimate the sampling performance.The simulation results show that with the increasemen of the high order interval,the accuracy of traffic monitoring is gradually improved compared with the sampling and interval sampling,while the resource consumption is significantly reduced.
作者 曾英 ZENG Ying(Engineering Training Center, Hunan City University, Yiyang, Hunan 413000, China)
出处 《湖南城市学院学报(自然科学版)》 CAS 2018年第6期53-56,共4页 Journal of Hunan City University:Natural Science
基金 湖南省普通高等学校教学改革研究项目(湘教通[2017]452号) 湖南城市学院高等教育科学研究课题(JK15B023)
关键词 流量监测 均匀分组采样 高阶估计 相对熵估计 flow monitoring uniform packet sampling higher order estimation relative entropy estimation
  • 相关文献

参考文献3

二级参考文献54

  • 1曲巨宝.SPF算法在IS-IS路由选择中的应用[J].南平师专学报,2005,24(2):20-22. 被引量:2
  • 2Erdogmus D, Principe J C. Generalized information potentied criterion for adaptive system training. IEEE Transactions on Neured Networks, 2002, 13(5): 1035-1044.
  • 3Erdogmus D, Principe J C. Convergence properties and data efficiency of the minimum error entropy criterion in adaline training. IEEE Transactions on Signal Processing, 2003, 51(7): 1966-1978.
  • 4Erdogmus D, Principe J C. Comparison of entropy and mean square error criteria in adaptive system training using higher order statistics. In: Proceedings of the 2nd International Workshop on Independent Component Analysis and Blind Signal Separation. Berlin, German: Springer, 2000. 75-80.
  • 5Principe J C, Xu D, Zhao Q, Fisher J W. Learning from examples with information theoretic criteria. The Journal of VLSI Signal Processing, 2000, 26(1-2): 61-77.
  • 6Chen B D, Hu J C, Pu L, Sun Z Q. Stochastic gradient algo rithm under (h, φ)-entropy criterion. Circuits, Systems, and Signal Processing, 2007, 26(6): 941-960.
  • 7Han S, Rao S, Erdogmus D, Jeong K H, Principe J C. A minimum-error entropy criterion with self-adjusting step-size (MEE-SAS). Signal Processing, 2007, 87(11): 2733-2745.
  • 8Wolsztynski E, Thierry E, Pronzato L. Minimum entropy estimation in semi-parametric models. Signal Processing, 2005, 85(5): 937-949.
  • 9Silva L M, Felgueiras C S, Alexandre L A, Marques de Sa J. Error entropy in classification problems: a univaxiate data analysis. Neural Computation, 2006, 18(9): 2036-2061.
  • 10Kapur J N, Kesavan H K. Entropy Optimization Principles with Applications. New York: Academic Press, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部