期刊文献+

基于上市公司财务数据的我国农业供应链金融风险防范实证研究 被引量:9

An Empirical Study on the Prevention of Financial Risks in China's Agricultural Supply Chain Based on Financial Data of Listed Companies
下载PDF
导出
摘要 改革开放以来,作为国民经济基础的农业在我国取得了巨大的发展,实现了从吃不饱到吃得好的历史性跨越。然而,相对于第二、三产业的发展,由于过去长期实行农业反哺工业,城乡"二元结构"的政策体制,农业发展依然严重滞后于其他产业的发展。加之,农业受自然灾害等影响较大,使农业生产的风险加大,进一步导致对农业的投资严重不足。为此,本文通过对农业供应链金融模式及其风险防范的研究,运用主成分分析及二元Logistic回归方法,选取农业板块上市公司数据,合作客户在农业供应链金融产品领域的守约概率能被更准确地测量。该研究有助于降低银行贷款的信用风险,同时增加供应链系统的效益。 Agriculture is the foundation of the national economy.Since the reform and opening up,agriculture has achieved rapid development in China and has achieved a historic leap from eating enough to eating well.However,relative to the development of the secondary and tertiary industries,due to the long-term implementation of the agricultural back-feeding industry and the"dual structure"policy system in urban and rural areas,agricultural development still lags behind the development of other industries.In addition,agriculture is greatly affected by natural disasters,which increases the risk of agricultural production and further leads to a serious shortage of investment in agriculture.Therefore,through the study of the agricultural supply chain financial model and its risk prevention,this paper uses principal component analysis and binary Logistic regression methods to select the data of listed companies in the agricultural sector.The cooperative customer's compliance probability in the agricultural supply chain financial product area can be measured more accurately.The study will contribute to reduce the credit risk of bank loans while increase the effectiveness of supply chain systems.
作者 柴正猛 王占宇 司沛琳 CHAI Zheng-meng;WANG Zhan-yu;SI Pei-lin(Kunming University of Science and Technology,Kunming 650093,China)
机构地区 昆明理工大学
出处 《价值工程》 2019年第1期81-86,共6页 Value Engineering
基金 国家自科基金(71662020) 云南省院合作重点项目(SY201608) 云南省社科基地课题(SKJD201554001) 云南省人培项目(SKPYZD201608 SKPYYB2017023) 云南省南亚东南亚中心重点招标课题(ICRC20160610)
关键词 农业供应链金融 主成分分析 二元LOGISTIC回归 agricultural supply chain finance principal component analysis binary Logistic regression
  • 相关文献

参考文献13

二级参考文献120

共引文献1212

同被引文献57

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部