期刊文献+

变系数超对称KdV方程的双线性方法

Bilinear Method for the Supersymmetric Variable Coefficient KdV Equation
下载PDF
导出
摘要 主要利用双线性方法寻找变系数超对称KdV方程的孤子解。首先通过直接法给出了变系数KdV方程超对称化形式,其次通过适当的变量变换,将非线性方程的Hirota双线性方法和双线性Bcklund变换这两种求解方法变换推广到变系数超对称KdV方程中,利用这两种方法分别求出变系数超对称KdV方程的孤子解的表达形式。 The discussion of integrability of soliton equation is important for soliton theory.The exact solution of a nonlinear soliton equation is another essential aspect in soliton problem.Among them,the Hirota method and Backlund transformation are proved to be the effective approaches to find the exact solutions for the nonlinear soliton equation.In this paper,the supersymmetric form of the variable coefficient Korteweg-de Vries(VCKdV)equation is given.The soliton solutions for the VCKdV equation are derived by Hirota method and Backlund transformation.First,how to seek the supersymmetry VCKdV equation was discussed by the direct method.Through variable transformation and bilinear method,the supersymmetry variable coefficient KdV equation can be written in a bilinear form.Soliton solutions for the supersymmetry VCKdV equation are obtained by supersymmetry bilinear derivatives.Then starting from the bilinear form of the Supersymmetry VCKdV equation,the bilinear Backlund transformation was obtained.By the commutability of the bilinear Backlund transformation,the one soliton solution,two soliton solution,and three soliton solution for the supersymmetry VCKdV equation were given respectively.
作者 董超 邓淑芳 DONG Chao;DENG Shu-fang(Department of Mathematics,East China University of Science and Technology,Shanghai 200237,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第6期955-960,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(11301183)
关键词 变系数超对称KdV方程 HIROTA双线性方法 双线性Backlund变换 孤子解 supersymmetry VCKdV equation Hirota bilinear method bilinear Backlund transformation soliton solutions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部