摘要
设计手写数字识别模型,在TensorFlow框架上使用Softmax回归算法实现手写数字图像的识别,并且在此模型基础上添加神经网络改进模型。实验表明,使用TensorFlow能够快速实现手写图像识别,改进模型后实验准确率可从87.8%提升到99.2%。
In this paper,we designed a handwritten digital recognition model and used the Softmax regression algorithm to realize the recognition of handwritten digital images on the TensorFlow framework,and added a neural network improvement model based on this model.Experiments showed that using TensorFlow can quickly realize handwritten image recognition,and the experimental accuracy can be improved from 87.8%to 99.2%.
作者
张哲
张根耀
王珂
ZHANG ZHE;ZHANG Gen-yao;WANG KE(College of Mathematics and Computer Science,Yan′an University,Yan′an 716000,China)
出处
《延安大学学报(自然科学版)》
2018年第4期24-27,共4页
Journal of Yan'an University:Natural Science Edition
基金
国家自然科学基金(61761042)
延安市科研攻关项目(2017KG-01
2017WZZ-04-01)