期刊文献+

具广义非线性源的波动方程的高能爆破 被引量:1

Finite Time Blow up of Solutions for Nonlinear Wave Equation with General Nonlinearity for Arbitrarily Positive Initial Energy
下载PDF
导出
摘要 研究一类具广义非线性源的非线性波动方程的初边值问题在高初始能级状态下解的有限时间爆破.利用经典的凹函数方法找到了导致该问题具任意正初始能级的解有限时间爆破的初值. This paper investigates the finite time blow up of solutions for the initial boundary value problem of a class of some nonlinear wave equations with general nonlinearity at high initial energy level.By employing the classical concavity method,we establish some new sufficient conditions on initial data such that the solution with arbitrarily positive initial energy blows up in finite time.
作者 杨延冰 连伟 黄少滨 徐润章 Yang Yanbing;Lian Wei;Huang Shaobin;Xu Runzhang(College of Science,Harbin Engineering University,Harbin 150001;College of Computer Science and Technology,Harbin Engineering University,Harbin 150001;College of Automation,Harbin Engineering University,Harbin 150001)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2018年第6期1239-1244,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(11471087) 中国博士后科学基金(2013M540270) 黑龙江省博士后基金(LBHZ15036)~~
关键词 波动方程 高初始能级 有限时间爆破 广义非线性源 Wave equation High initial energy Finite time blow up General nonlinearity.
  • 相关文献

二级参考文献29

  • 1Aassila M,Guesmia A. Energy decay for a damped nonlinear hyperbolic equation[J].Applied Mathematics Letters,1999.49-52.
  • 2Ball J. Remarks on blow up and nonexistence theorems for nonlinear evolutions equations[J].Quarterly Journal of Mathematics(Oxford),1977,(02):473-486.
  • 3Benaissa A,Messaoudi S A. Exponential decay of solutions of a nonlinearly damped wave equation[J].Nonlinear Diff Equ Appl,2005.391-399.
  • 4Gazzola F,Squassina M. Global solutions and finite time blowup for damped semilinear wave equations[J].Annales de l'Institut Henri Poincaré(C)Analyse Non Linéaire,2006.185-207.
  • 5Gerbi S,Said-Houari B. Exponential decay for solutions to semilinear damped wave equation[J].Discrete and Continuous Dynamical Systems-Series S,2012,(03):559-566.
  • 6Georgiev V,Todorova G. Existence of solutions of the wave equation with nonlinear damping and source term[J].Journal of Differential Equations,1994.295-308.
  • 7Haraux A,Zuazua E. Decay estimates for some semilinear damped hyperbolic problems[J].Arch Rational Mesh Anal,1988.191-206.
  • 8Ikehata R. Some remark on the wave equations with nonlinear damping and source term[J].Nonlinear Analysis-Theory Methods and Applications,1996.1165-1175.
  • 9Ikehata R,Suzuki T. Stable and unstable sets for evolution equations of parabolic and hyperbolic type[J].Hiroshima Mathematical Journal,1996.475-491.
  • 10Komornik V. Exact Controllability and Stabilization.The Multiplier Method[M].Pairs:Mason-John Wiley,1994.

共引文献13

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部