期刊文献+

基于改进的几何约束算法与卷积神经网络的车辆检测 被引量:2

Vehicle Detection Based on Improved Geometric Constraint Algorithm and Convolution Neural Network
下载PDF
导出
摘要 论文提出了一种基于改进的几何约束算法有效结合卷积神经网络(CNN)的车辆检测方法。首先对几何约束算法进行改进,避免该算法重复的矩阵运算,从而进一步提高该算法效率。根据改进的几何约束算法计算出车辆的感兴趣区域,然后在该区域内提取Haar-like特征,通过Adaboost分类器初步检测得到候选框。之后用训练好的卷积神经网络模型对目标候选框进行分类。实验结果表明,该方法能够有效地减少车辆检测时间,提高车辆检测的精度,并且对多种光照条件,部分遮挡,姿态变化等具有一定的鲁棒性。 In this paper,a vehicle detection method based on improved geometric constraint algorithm combined with convolu?tion neural network is proposed.Firstly,the geometric constraint algorithm is improved to avoid the matrix operation,in order to fur?ther improve the efficiency of the algorithm.According to the improved geometric constraint algorithm,the region of interest of the vehicle is obtained.And the Haar-like feature is extracted in the region,then the Adaboost classifier is used for the preliminary de?tection.The convolution neural network model is trained by the vehicle training set.The convolution neural network model is used to classify candidate regions.The experimental results show that this method can reduce the vehicle detection time and improve the ac?curacy of vehicle detection effectively,and it is robust for a variety of lighting conditions,partial occlusion and posture.
作者 周马莉 张重阳 ZHOU Mali;ZHANG Chongyang(School of Computer Science Engineering,Nanjing University of Science and Technology,Nanjing 210094)
出处 《计算机与数字工程》 2018年第12期2406-2412,共7页 Computer & Digital Engineering
基金 "核高基"国家重点专项(编号:2015ZX01041101)资助
关键词 车辆检测 几何约束 ADABOOST 卷积神经网络 vehicle detection geometric constraints Adaboost convolution neural network
  • 相关文献

参考文献1

二级参考文献15

  • 1Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 2Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 3Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 4Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 5Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.
  • 6Wen-Chung Chang;Chih-Wei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Published by Institute of Electrical and Electronics Engineers,Inc. ,2010,40(3):892- 902.
  • 7Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[A]. In Proceeding of International Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, HI,USA 2001,1:511 - 518.
  • 8Viola P, Jones M. Robust real-time face detection[J].International Journal of Computer Vision, Published by Springer, 2004,57(2) :137 - 154.
  • 9Lienhart R,Maydt J. An extended set of Haar-like features for rapid object detection[ A]. The IEEE International Conference on Image Processing [ C ]. New York, USA, 2002, 1 : 900 - 903.
  • 10Freund Y, Schapire R E. Experiments with a New Boosting Algorithrn[ A]. In Proceedings of the 13th Conference on Machine Learning, Morgan Kanfmann[ C]. USA, 1996,148 - 156.

共引文献86

同被引文献25

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部