摘要
遥感无人机的故障具有复杂度高、非线性、故障表现类型多的特点,基于这样的特点论文针对遥感无人机的故障诊断专家系统知识库,提出基于BP神经网络的知识学习的研究。论文详细阐述遥感无人机的故障诊断专家系统知识库的组成结构和知识库工作原理与推理过程。该方法对遥感无人机系统的故障诊断专家系统知识库的构建是有效的,应用于遥感无人机实现故障诊断的自动化、智能化,同时对进一步研究遥感无人机故障诊断提供基础。
The failure of uav remote sensing has high complexity,nonlinear,fault show the characteristics of more types,based on the characteristics of remote sensing unmanned aerial vehicle(uav),the author of this paper,fault diagnosis expert sys?tem knowledge base is put forward based on the BP neural network knowledge learning research.This paper elaborates the structure of the knowledge base of the expert system of fault diagnosis of remote sensing uav and the working principle and reasoning process of knowledge base.The method of remote sensing unmanned aerial vehicle(uav)of the construction of the fault diagnosis expert sys?tem knowledge base system is effective and applied to the uav remote sensing to realize the automation and intelligent fault diagno?sis,and remote sensing unmanned aircraft fault diagnosis provides the basis for further research.
作者
于俊夫
高晟扬
YU Junfu;GAO Shenyang(Yunnan Agricultural University,Kunming 605201)
出处
《计算机与数字工程》
2018年第12期2478-2481,共4页
Computer & Digital Engineering
关键词
遥感无人机
故障诊断
专家系统知识库
BP神经网络
remote sensing uav
fault diagnosis
expert system knowledge base
BP neural network