摘要
针对智能电网中同期线损管理可以查询异常数据,从而找到异常挂载设备的问题,论文提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)关键因素提取的支持向量机(Support Vector Machine,SVM)电网线损预测模型,通过KPCA提取影响线损的特征向量,然后建立SVM线损预测模型,然后将预测线损电量与实际线损相比较,若差值大于设定阈值,则采用TF-IDF(term frequency–inverse document frequency)算法筛选异常挂载电力设备。最后,通过实验验证了KPCA-SVM的有效性以及TF-IDF方法筛选异常设备的准确性。
The problem of abnormal mounting equipment can be found by querying abnormal data for the management of the same time in smart grid.In this paper,the model of Support Vector Machine(SVM)grid line loss prediction based on Kernel Princi?pal Component Analysis(KPCA)is proposed.The characteristic vector of the affected line loss is extracted by KPCA and then the SVM line loss prediction model is established.Then,the forecast line loss is compared with the actual line loss.If the difference val?ue is greater than the set threshold,the TF-IDF(term frequency-inverse document frequency)algorithm is used to filter the abnor?mal mounted power equipment.Finally,the validity of KPCA-SVM and the accuracy of TF-IDF method are verified by experi?ments.
作者
姚劲松
安立进
黄文思
郭雷
霍成军
陆鑫
YAO Jinsong;AN Lijin;HUANG Wensi;GUO Lei;HUO Chengjun;LU Xin(State Grid Shanxi Electric Power Company,Taiyuan 030001;SGIT-GreatPower,Fuzhou 350003;State Grid Zhejiang Haining Power Supply Company,Jiaxing 314400)
出处
《计算机与数字工程》
2018年第12期2534-2538,共5页
Computer & Digital Engineering
基金
国家电网公司科技项目"面向同期线损管理的多专业数据治理技术与挖掘应用研究"资助
关键词
核主成分分析
支持向量机
同期线损
预测
nuclear principal component analysis
support vector machines
line loss in the same period
predict