期刊文献+

基于遗传算法的PC构件生产调度优化研究进展

Research Progress of Production Scheduling Optimization of PC Components Based on Genetic Algorithm
下载PDF
导出
摘要 预制生产技术具有高工业化水准和低能耗的优点,符合我国节能环保新政策。随着工业化的推进,该技术已广泛应用于公共住房和交通基础设施项目。文章描述了生产调度问题的基本概念,讨论了混凝土预制件(PC构件)生产调度问题及其与传统生产车间的异同,概述了现阶段遗传算法在预制生产调度中的应用,包括求解预制生产调度模型,解决多生产线问题,与人工智能AIP结合,考虑多种约束条件,与仿真结合以及多种算法相结合等,最后展望了PC构件生产调度优化未来的研究方向。 Prefabrication technologies have the advantages of high industrialization level and low energy consumption,which is very consistent with China's new policy of energy conservation and environmental protection.With the advancement of national industrialization,prefabrication technologies have been extensively applied in public housing and transportation infrastructure projects.The basic concept of production scheduling problem,PC component production scheduling problem and the differences between PC component production and traditional workshop production were discussed.And the application of genetic algorithm in precast manufacturing industry was summarized,including solving precast production scheduling model and the problem of multiple production line,considering various constraints,combining with simulation,artificial intelligence planning and other algorithms.The future research direction of PC component production scheduling optimization was prospected.
作者 严佳坤 高新南 YAN Jia-kun;GAO Xin-nan(College of Engineering, Nanjing Agricultural University, Nanjing Jiangsu 210031 China)
出处 《江苏建筑》 2018年第B11期155-157,160,共4页 Jiangsu Construction
关键词 PC构件 生产调度 遗传算法 PC component production scheduling genetic algorithm
  • 相关文献

参考文献5

二级参考文献47

  • 1杨晓梅,曾建潮.遗传算法求解柔性job shop调度问题[J].控制与决策,2004,19(10):1197-1200. 被引量:34
  • 2张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 3席卫东,乔兵,朱剑英.基于改进遗传算法的柔性作业车间调度[J].哈尔滨工业大学学报,2007,39(7):1151-1153. 被引量:13
  • 4ZHANG H P,GEN M.Multistage-based genetic algorithm for flexible job-shop scheduling problem[J].Complexity International,2005,11:223-232.
  • 5MASTROLILLI M,GAMBARDELLA L M.Effective neighborhood functions for the flexible job shop problem[J].Journal of Scheduling,2000,3(1):3-20.
  • 6GAO L,PENG C Y,ZHOU C,et al.Solving flexible job-shop scheduling problem using general particle swarm optimization[C]//Proceedings of The 36th International Conference on Computers & Industrial Engineering,Taipei,China.2006:3 018-3 027.
  • 7KACEM Ⅰ.Genetic algorithm for the flexible job-shop scheduling problem[J].IEEE International Conference on Systems,Man.and Cybernetics,2003,4:3 464-3 469.
  • 8KACEM I,HAMMADI S,BORNE P.Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems[J].IEEE Transactions on Systems,Man.and Cybernetics,Part C,2002,32(1):408-419.
  • 9HO N B,TAY J C.GENACE:An efficient cultural algorithm for solving the flexible job-shop problem[C]//Proceedings of 2004 Congress on Evolutionary Computation,Piscataway,IEEE,2004:1 759-1 766.
  • 10GOLDBERG D E,DEB K.A comparative analysis of selection schemes used in genetic algorithms[C]//RAWLINS G,ed.Foundations of Genetic Algorithms,Morgan Kaufmann,1991:69-93.

共引文献389

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部