期刊文献+

基于FIR分解的轴承故障快速诊断方法研究 被引量:1

Research on Fast Fault Diagnosis Method of Bearing Based on FIR Decomposition
下载PDF
导出
摘要 为实现轴承故障的快速准确诊断,以互相关和互信息为基础构造一种针对轴承的快速故障诊断方法。该方法首先运用有限长单位冲激响应(Finite Impulse Response,简称FIR)滤波器对各单一故障(包括内圈、外圈、滚珠、保持架)振动信号进行分解,降低信号分解过程中因模态混叠造成的干扰,以力学分析建立的各故障振动模型为参考,对分解后的子信号采用互相关分析法,选出表征故障特征的子信号,计算子信号透露的信息量——互信息,用于构造故障特征矩阵,最后由K最近邻分类算法(K-Nearest Neighbor,简称KNN算法)的识别结果验证该算法对实现轴承故障快速识别具有优势。 In order to realize the fault diagnosis of bearing fast and accurately,a fast fault diagnosis method for bearing was constructed based on cross correlation and mutual information.In this method,each single fault vibration signal(including inner ring,outer ring,ball and cage)was decomposed by Finite Impulse Response(FIR)which reduce aliasing caused by interference in the process of signal decomposition.Taking the fault vibration model established by mechanics analysis as the reference and calculated the correlation coefficient,the sub-signal that characterizes the fault feature was selected.Calculated the mutual information of sub-signal and constructed the fault feature matrix.Finally,the recognition results of K-Nearest Neighbor(KNN)is used to validate that the algorithm has the advantage in rapid identification of bearing failure.
作者 章翔峰 姜宏 ZHANG Xiangfeng;JIANG Hong(School of Mechanical Engineering,Xinjiang University,Urumqi Xinjiang 830047,China)
出处 《机床与液压》 北大核心 2018年第23期180-183,共4页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51765061) 新疆维吾尔自治区青年教师科研培育基金(自然科学类)(XJEDU2016S036)
关键词 快速诊断 信号分解 互相关 互信息 KNN算法 Rapid diagnosis Signal decomposition Cross correlation Mutual information K-Nearest Neighbor
  • 相关文献

参考文献7

二级参考文献81

  • 1陈法法,汤宝平,姚金宝.基于DSmT与小波网络的齿轮箱早期故障融合诊断[J].振动与冲击,2013,32(9):40-45. 被引量:13
  • 2胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 3李常有,徐敏强,郭耸.基于改进的Hilbert-Huang变换的滚动轴承故障诊断[J].振动与冲击,2007,26(4):39-41. 被引量:18
  • 4陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204. 被引量:27
  • 5沈路 周晓军 张文斌 等.基于形态滤波与灰色关联度的滚动轴承故障诊断.振动与冲击,2009,(11):25-28.
  • 6Huang N E,Shen Z, Long S R,et al. The empiricalmode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis[J], Pro-ceeding of Royal Society London A, 1998(454) : 903-995.
  • 7Peng Z K, Peter W T, Chu F L. An improved Hil-bert-Huang transform and its application in vibrationsignal analysis [ J J. Journal of Sound and Vibration,2005(286):187-205.
  • 8Dwyer D F. Detection of non-gaussian signals by fre-quency domain kurtosis estimation [C] // InternationalConference on Acoustic Speech and Signal Process-ing. Boston: [s. n. ] , 1983:607-610.
  • 9Antoni J,Randall R B. The spectral kurtosis applica-tion to the vibration surveillance and diagnostics of ro-tating machines [J ]. Mechanical Systems and SignalProcessing, 2006(20):308-331.
  • 10Antoni J. Fast computation of the kurtogram for thedetection of transient faults [J]. Mechanical Systemsand Signal Processing,2007(21) : 108-124.

共引文献179

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部