期刊文献+

Aβ_(1-42)寡聚体对小鼠神经胶质细胞D1a IL-1β表达水平的影响研究

The effect of Aβ_(1-42) oligomer on IL-1β expression in rat glial cell D1a
下载PDF
导出
摘要 目的探讨β-淀粉样蛋白1~42寡聚体(Aβ1-42)寡聚体对小鼠神经胶质细胞D1a白细胞介素(IL)-1β表达水平的影响。方法采用Aβ1-42寡聚体和二甲基亚砜(DMSO)小鼠神经胶质细胞D1a,采用蛋白免疫印迹法(Westernblot)、实时荧光定量逆转录聚合酶链反应(qRT-PCR)、免疫荧光染色技术检测并比较D1a细胞IL-1β蛋白和m RNA表达水平的差异。结果与DMSO处理相比,Aβ1-42寡聚体处理可明显上调D1a细胞IL-1β蛋白和mRNA表达水平(P<0.05)。结论 Aβ1-42寡聚体可能通过活化神经胶质细胞上调IL-1β的表达。 objective To explore the effect of amyloidβ-protein 1-42 oligomers(Aβ1-42 oligomers)on interleukin-1β(IL-1β)expression in rat glial cell D1a.Methods D1a cells were treated with Aβ1-42 oligomer and dimethyl sulfoxide respectively.The expression of IL-1βprotein and mRNA were detected by using Western blot,quantitative real-time polymerase chain reaction and immunofluorescence.Results The expression levels of IL-1βprotein and mRNA in D1a cells treated with Aβ1-42 oligomers were significantly higher than those treated with DMSO(P<0.05).Conclusion Aβ1-42 oligomers could activate the glial cells and up-regulate the expression of IL-1β.
作者 王鼎 李晓红 李亚惠 WANG Ding;LI Xiaohong;LI Yahui(the First Clinical College of Dalian Medical University,Dalian,Liaoning 116044,China;Friendship Hospital Affiliated to Dalian Medi.cal University,Dalian,Liaoning 116001,China)
出处 《现代医药卫生》 2018年第24期3789-3791,共3页 Journal of Modern Medicine & Health
关键词 阿尔茨海默病 炎性反应 白细胞介素-1Β Β-淀粉样蛋白 Aβ1-42寡聚体 Alzheimer’s disease Inflammatory reaction Interleukin-1 Amyloid β-protein Aβ1-42 oligomers
  • 相关文献

参考文献1

二级参考文献22

  • 1Reddy P H. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimcr'sdisease[J]. Brain research, 2011, 1415:136-148.
  • 2Zilkova M, Zilka N, Kovac A, et al. Hyperphosphorylated truncated protein tau induces caspase-3 independent apoptosis-like pathway in the Alzheimer's disease cellular model [J]. Journal of Alzheimer's Disease, 2011, 23(1): 161-169.
  • 3Zhu X, Raina A K, Perry G, et al. Apoptosis in Alzheimer disease: a mathematical improbability [J]. Current Alzheimor Research, 2006, 3 (4): 393-396.
  • 4Von Bergen M, Barghom S, Biemat J, et al. Tau aggregation is driven by a transition from random coil to beta sheet structure[J]. Biochimica et biophysica acta. Molecular basis of disease, 2005, 1739 (2-3): 158-166.
  • 5Inouye H, Sharma D, Goux W J, et al. Structure of core domain of fibril-forming PHF/Tau fragments [J]. Biophysical journal, 2006, 90 (5): 1774-1789.
  • 6Waterman-Storer C M, Salmon E D. Microtubule dynamics: treadmilling comes around again [J]. Current Biology, 1997, 7 (6): R369-R372.
  • 7Cuchillo-Ibanez I, Seereeram A, Byers H L, et al. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin [J]. The FASEB Journal, 2008, 22(9): 3186-3195.
  • 8Brandt R, Hundelt M, Shahani N. Tau alteration and neuronal degeneration in tauopathies: mechanisms and models [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2005, 1739 (2): 331-354.
  • 9LaPointe N E, Morfini G, Pigino G, et al. The amino terminus of tau inhibits kinesin dependent axonal transport: Implications for filament toxicity[J]. Journal ofneuroscience research, 2009, 87(2): 440-451.
  • 10Kolarova M, Garci a-Sierra F, Bartos A, et al. Structure and pathology oflau protein in Alzheimer disease[J]. International Journal of Alzheimer's Disease, 2012, 2012.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部