期刊文献+

基于TensorFlow的LSTM循环神经网络短期电力负荷预测 被引量:7

LSTM Recurrent Neural Network Short-Term Power Load Forecasting Based on Tensor Flow
下载PDF
导出
摘要 随着智能电网、坚强电网的建立及人工智能领域技术的高速发展,如何对电力领域的负荷进行更高精度的预测已成为电力从业者们特别关注与研究的问题。基于TensorFlow智能学习系统的深度学习LSTM循环神经网络算法的短期电力负荷预测算法,结合某地区发电厂负荷数据设计实验,通过多次数据迭代、参数更新,进行模型训练与预测,最终的实验证明:基于TensorFlow的LSTM循环神经网络算法预测效果明显好于传统机器学习算法。随着数据量的增大,模型更显示出其良好的鲁棒性。 With the establishment of smart grids and strong grids,and the rapid development of technologies in the field of artificial intelligence,how to predict the load of the electric power more accurately has become a problem that electric power practitioners pay special attention to and study.Therefore,this paper proposes a LSTM recurrent neural network short-term power load forecasting algorithm based on TensorFlow.Experiment is designed by using actual power load data of a transformer substation.Using multiple data iterations and parameter updates to train the model and predict.The conclusions as following:Under massive data,LSTM recurrent neural network short-term power load forecasting algorithm based on TensorFlow has obviously better prediction effect than traditional machine learning algorithm.And as the amount of data increases,the model shows its good robustness.
作者 李松岭 LI songling
机构地区 不详
出处 《上海节能》 2018年第12期974-977,共4页 Shanghai Energy Saving
关键词 TensorFlow LSTM 深度学习 短期电力负荷预测 Tensor Flow LSTM Deep Learning Short Term Electricity Load Predition
  • 相关文献

参考文献5

二级参考文献77

共引文献318

同被引文献71

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部