期刊文献+

基于共享单车数据的居民出行热点区域与时空特征分析 被引量:9

Hotspot and Spatio-temporal Feature of Residents' Travel Behavoir Based on Sharing-bikes Data
下载PDF
导出
摘要 在大数据时代,基于用户地理位置的服务已被广泛应用于人们的日常生活,其位置信息体现了用户的活动范围、聚集、活动痕迹等内容.采用北京市摩拜单车数据,经数据处理、地图匹配及聚类分析后,以可视化的方式揭示居民出行热点区域与时空特征规律.研究发现,工作日出现早晚骑行高峰,多条地铁线路客流量较大,出行具有明显的潮汐现象,热点区域比休息日更为集中. In the era of big data,services based on user’s geographical location are widely used in people’s daily lives,and their location information reflects the scope of activities of the user,aggregation,activity traces,and so on.In this article,we used the Mobike data to reveal hotspot and spatio-temporal features and patterns of residents in a visual way after data processing,map matching and cluster analysis.Studies were shown that there were morning and evening riding peaks on the working day,and there were a large number of passengers on the subway lines.There were an obvious tidal phenomena in the trips,and the hot spots were more concentrated than those on the rest day.
作者 王璐 李斌 徐永龙 马博超 魏俊博 WANG Lu;LI Bin;XU Yonglong;MA Bochao;WEI Junbo(School of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China;Key Laboratory of Western China Mineral Resources and Geological Engineering,Ministry of Education,Xi’an 710054,China;Inner Mongolia Shenke National Land Technology Co.Ltd.,Hohhot 010020,China)
出处 《河南科学》 2018年第12期2010-2015,共6页 Henan Science
基金 国家973研究项目(2014CB744702)
关键词 摩拜单车 居民出行 热点区域 时空特征 Mobike residents travel region of interest spatio-temporal feature
  • 相关文献

参考文献16

二级参考文献258

共引文献615

同被引文献66

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部