期刊文献+

基于车辆跟踪的数据关联算法研究

Research on Data Association Algorithm Based on Vehicle Tracking
下载PDF
导出
摘要 对于道路车辆目标的跟踪,由于其高机动性、杂波密集等特点,交互式多模型联合概率数据关联无疑是一种好的跟踪算法。但其固有的缺点是计算量会随着目标个数的增多迅速增加,并且其较少的运动模型难以保证跟踪精度,而增加模型个数会引起模型之间的竞争。因此,提出了一种改进的变结构多模型联合数据关联算法(VSMM-JPDA)。理论分析与对比仿真表明:在非机动、机动转弯和直线机动情况下,该算法对目标的跟踪精度都优于固定结构多模型算法,并且运算量大大减少。 For tracking of road vehicle targets,due to its high maneuverability and clutter-intensive characteristics,interactive multi-model joint probability data association is a good tracking algorithm.However,its inherent disadvantage is that as the number of objects increases,its computational complexity will increase rapidly,and its fewer motion models will not be able to guarantee the tracking accuracy,while increasing the number of models will cause competition among the models.Therefore,an improved Variable Structure Multi-Model Joint Data Association Algorithm(VSMM-JPDA)is put forward.The theoretical analysis and comparison simulation show that the proposed algorithm has better tracking accuracy than the fixed structure and multi-model algorithm under non-motoring,maneuvering and linear maneuvering conditions,and the computational cost is greatly reduced.
作者 王健 曹聪聪 Wang Jian;Cao Congcong(School of Automobile and Traffic Engineering, Hefei University of Technology, Hefei City, Anhui Province 230009, China)
出处 《农业装备与车辆工程》 2018年第12期40-43,共4页 Agricultural Equipment & Vehicle Engineering
关键词 变结构多模型 模糊多门限 联合数据关联算法 车辆多目标跟踪 variable structure multi-model fuzzy and multi-gate limit joint data association algorithm vehicle multi-target tracking
  • 相关文献

参考文献4

二级参考文献41

  • 1李涛,王宝树,乔向东.曲线模型的半自适应交互多模型跟踪方法[J].电子学报,2005,33(2):332-335. 被引量:13
  • 2常军,石星.直升机机载雷达对地多目标跟踪研究[J].信息与电子工程,2005,3(3):167-171. 被引量:3
  • 3张晶炜,熊伟,何友.集中交互式多传感器联合概率数据互联算法[J].光电工程,2006,33(11):26-30. 被引量:7
  • 4胡文龙,毛士艺.基于组合优化分配的多传感器数据互联[J].系统工程与电子技术,1997,19(1):1-9. 被引量:4
  • 5HE You, WANG Guo-hong, LU Da-jin, et al, Multisensor Information Fusion With Applications[M], Beijing: Publishing House of Electronics Industry, 2000,
  • 6L,Y, PAO, C,W. FREI, A comparison of parallel and sequential implementations of amultisensor multitarget tracking algorithm[A]. Proc 1995 American Control Conf.[C]. Seattie, Washington, USA: IEEE, 1995. 1683-I687.
  • 7K, CHANG, C, CHONG, Bar-SHALOM. Joint Probabilistic Data Association in Distributed Sensor Networks[J]. IEEE Trans.on Automatic Control, 1986, 31(10): 889-897.
  • 8S. S. BLACKMAN, R. J. DEMPSTER, M. T. BUSCH, et al. IMM/MHT Solution to Radar Benchmark Tracking Problem [J].IEEE Trans. on AES, 1999, 35(2): 730-738.
  • 9Robert L. POPP, Krishna R. PATTIPATI, Y. Bar-SHALOM. M-best SD Assignment Algorithm with Application to Multitarget Tracking [J]. SPIE, 1998, 3373: 475-495.
  • 10T. KIRUBARJAN, Y. Bar-SHALOM. Multiassignment tbr Tracking a Large Number of Overlapping Objects[J], IEEE Trans.on AES, 2001, 37(1): 2-19.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部