摘要
In order to expand the introduction amount of renewable energy,it is necessary to solve various problems such as suppression of output fluctuation,cost of power supply compensator for reducing output fluctuation,and lack of transmission capacity.On the other hand,it is known that output fluctuation of renewable energy is leveled by interconnecting renewable energy dispersedly arranged in a wide area.Therefore,it is possible to reduce the cost of the system by optimally distributing and linking the renewable energy to a wide area.Therefore,in this study,we developed computer algorithms to optimize the location and introduction amount of renewable energy that will conduct wide area interconnections based on actual transmission network equipment.The target of the analysis was the Hokkaido area in Japan with extensive land and abundant natural energy.Using the proposed algorithm,we evaluate the relationship between economical renewable energy location and capacity,renewable energy supply rate and grid capacity.As a result,it was possible to realize an economical power system with a high percentage power supply ratio of renewable energy.