期刊文献+

分组比例公平M-GSO优化的FBMC认知无线电资源分配算法 被引量:1

Grouping proportional fairness modified GSO based resource allocation algorithm of FBMC cognitive radio
下载PDF
导出
摘要 多用户混合业务的多载波认知无线电系统中,考虑频谱感知错误的实际情况,将分组比例公平思想融入资源分配中,提出一种改进群智能优化算法。该算法针对混合型业务,确保不同用户公平性以及基于滤波器组多载波(FBMC)技术前提下,引入状态因子,以最大化认知无线电系统吞吐量为目标,利用改进群智能算法合理分配系统资源。比较FBMC和OFDM的认知无线电系统,仿真分析表明,该算法在对授权用户通信影响很小的情况下,系统容量优于OFDM的认知无线电系统容量,且确保用户的公平,同时满足混合业务的QoS需求。 In the multi.carrier cognitive radio system with multiuser mixed business,the grouping proportional fairness thought is fused into the resource allocation according to the actual situation of spectrum sensing error to propose an improved swarm intelligence algorithm.On the promising the fairness of different users and on the basis of filter bank multicarrier(FBMC)technology,the state factor is introduced into the algorithm for mixed business to maximize the cognitive radio system.The swam intelligence algorithm is used to allocate the system resources reasonably for the multiuser business.The cognitive radio systems based on FBMC and OFDM are compared.The simulation analysis results show that the capacity of cognitive radio system based on FBMC is better than that of cognitive radio system based on OFDM while the algorithm has low influence on primary user communication,and the algorithm can ensure the fairness of users,and satisfy the QoS requirement of mixed business.
作者 廉昱晴 刘彦隆 LIAN Yuqing;LIU Yanlong(Taiyuan University of Technology,Jinzhong 030600,China)
机构地区 太原理工大学
出处 《现代电子技术》 北大核心 2019年第1期33-37,共5页 Modern Electronics Technique
关键词 认知无线电 群智能算法 资源分配 滤波器组 正交频分复用 频谱感知 cognitive radio swarm intelligence algorithm resource allocation filter back OFDM spectrum sensing
  • 相关文献

参考文献2

二级参考文献89

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2KRISHNANAND K N, GHOSE D. Theoretical foun- dations for rendezvous of glowworm-inspired agent swarms at multiple locations [Jl- Robotics and Au- tonomous Systems, 2008, 56(7): 549-569.
  • 3TSENG K T. A glowworm algorithm for solving data cluster problems [M]. Taipei: Tatung University, 2008: 10-28.
  • 4KAIPA K N, PUTTAPPA A, Rendezvous of glowworm- inspired robot swarms at multiple sources loca- tions: a sound source based real-robot implementa- tion [C]//Lecture Notes in Computer Science, 2006, 4150: 259-269.
  • 5YANG Xinshe, HOSSEINI S S S, GANDOMI A H. Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect [J]. Applied Soft Computing, 2012, 12(3): 1180-1186.
  • 6KRISHNANAND t~ N. GHOSE D. A glowworm swarm optimization based multi-robot system for signal source localization [M]. Design and Control of In- telligent Robotic Systems, 2009: 53-74.
  • 7HUANG Zhengxin, ZHOU Yongquan. Using glowworm swarm optimization algorithm for clustering analysis [J]. Journal of Convergence Information Technology, 2011, 6(2): 78-85.
  • 8ZHOU Yongquan, YANG Yan. Glowworm swarm op- timization algorithm for solving numerical integral [J]. Communications in Computer and Information Science, 2011, 134:389-394.
  • 9GONG Qiaoqiao, ZHOU Yongquan, YANG Yan. Ar- tificial glowworm swarm optimization algorithm for solving 0-1 knapsack problem [J]. Advanced Materi- als Research, 2011, 143-144: 166-171.
  • 10JANSON S, MIDDENDORF M. A hierarchical particle swarm optimizer and its adaptive variant [J]. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernectics, 2005, 35: 1272-1282.

共引文献737

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部